We consider the following Problem:

  Strict Trs:
    {  minus(0(), Y) -> 0()
     , minus(s(X), s(Y)) -> minus(X, Y)
     , geq(X, 0()) -> true()
     , geq(0(), s(Y)) -> false()
     , geq(s(X), s(Y)) -> geq(X, Y)
     , div(0(), s(Y)) -> 0()
     , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
     , if(true(), X, Y) -> X
     , if(false(), X, Y) -> Y}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  minus(0(), Y) -> 0()
       , minus(s(X), s(Y)) -> minus(X, Y)
       , geq(X, 0()) -> true()
       , geq(0(), s(Y)) -> false()
       , geq(s(X), s(Y)) -> geq(X, Y)
       , div(0(), s(Y)) -> 0()
       , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> Y}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  minus(0(), Y) -> 0()
       , geq(X, 0()) -> true()
       , geq(0(), s(Y)) -> false()
       , div(0(), s(Y)) -> 0()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
        Uargs(div) = {1}, Uargs(if) = {1, 2}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                       [0 0]      [1 0]      [1]
       0() = [0]
             [1]
       s(x1) = [1 0] x1 + [0]
               [0 0]      [0]
       geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       true() = [0]
                [0]
       false() = [0]
                 [0]
       div(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                        [0 0]      [0 1]      [0 1]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  minus(s(X), s(Y)) -> minus(X, Y)
         , geq(s(X), s(Y)) -> geq(X, Y)
         , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
         , if(true(), X, Y) -> X
         , if(false(), X, Y) -> Y}
      Weak Trs:
        {  minus(0(), Y) -> 0()
         , geq(X, 0()) -> true()
         , geq(0(), s(Y)) -> false()
         , div(0(), s(Y)) -> 0()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {if(false(), X, Y) -> Y}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
          Uargs(div) = {1}, Uargs(if) = {1, 2}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [1 0]      [1]
         0() = [0]
               [0]
         s(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         true() = [0]
                  [0]
         false() = [1]
                   [0]
         div(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                       [0 1]      [0 0]      [1]
         if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                          [0 0]      [0 0]      [0 1]      [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  minus(s(X), s(Y)) -> minus(X, Y)
           , geq(s(X), s(Y)) -> geq(X, Y)
           , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
           , if(true(), X, Y) -> X}
        Weak Trs:
          {  if(false(), X, Y) -> Y
           , minus(0(), Y) -> 0()
           , geq(X, 0()) -> true()
           , geq(0(), s(Y)) -> false()
           , div(0(), s(Y)) -> 0()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {if(true(), X, Y) -> X}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
            Uargs(div) = {1}, Uargs(if) = {1, 2}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                           [0 0]      [1 0]      [1]
           0() = [0]
                 [0]
           s(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
           geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           true() = [1]
                    [0]
           false() = [0]
                     [0]
           div(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 1]      [0 0]      [1]
           if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                            [0 0]      [0 1]      [0 1]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  minus(s(X), s(Y)) -> minus(X, Y)
             , geq(s(X), s(Y)) -> geq(X, Y)
             , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())}
          Weak Trs:
            {  if(true(), X, Y) -> X
             , if(false(), X, Y) -> Y
             , minus(0(), Y) -> 0()
             , geq(X, 0()) -> true()
             , geq(0(), s(Y)) -> false()
             , div(0(), s(Y)) -> 0()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {geq(s(X), s(Y)) -> geq(X, Y)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
              Uargs(div) = {1}, Uargs(if) = {1, 2}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [1 0]      [1]
             0() = [0]
                   [0]
             s(x1) = [1 0] x1 + [1]
                     [0 0]      [0]
             geq(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                           [0 0]      [1 0]      [0]
             true() = [0]
                      [0]
             false() = [0]
                       [0]
             div(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                           [0 1]      [0 0]      [1]
             if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [3]
                              [0 1]      [0 1]      [0 1]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  minus(s(X), s(Y)) -> minus(X, Y)
               , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())}
            Weak Trs:
              {  geq(s(X), s(Y)) -> geq(X, Y)
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> Y
               , minus(0(), Y) -> 0()
               , geq(X, 0()) -> true()
               , geq(0(), s(Y)) -> false()
               , div(0(), s(Y)) -> 0()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component:
              {div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
                Uargs(div) = {1}, Uargs(if) = {1, 2}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
               0() = [0]
                     [0]
               s(x1) = [1 0] x1 + [1]
                       [0 0]      [3]
               geq(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                             [0 0]      [0 0]      [2]
               true() = [0]
                        [0]
               false() = [0]
                         [0]
               div(x1, x2) = [1 3] x1 + [1 1] x2 + [0]
                             [0 0]      [0 0]      [3]
               if(x1, x2, x3) = [1 2] x1 + [1 0] x2 + [1 0] x3 + [1]
                                [0 0]      [0 1]      [0 1]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs: {minus(s(X), s(Y)) -> minus(X, Y)}
              Weak Trs:
                {  div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                 , geq(s(X), s(Y)) -> geq(X, Y)
                 , if(true(), X, Y) -> X
                 , if(false(), X, Y) -> Y
                 , minus(0(), Y) -> 0()
                 , geq(X, 0()) -> true()
                 , geq(0(), s(Y)) -> false()
                 , div(0(), s(Y)) -> 0()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {minus(s(X), s(Y)) -> minus(X, Y)}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(minus) = {}, Uargs(s) = {1}, Uargs(geq) = {},
                  Uargs(div) = {1}, Uargs(if) = {1, 2}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                 0() = [0]
                       [0]
                 s(x1) = [1 0] x1 + [1]
                         [0 0]      [2]
                 geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                               [0 0]      [0 0]      [1]
                 true() = [0]
                          [0]
                 false() = [0]
                           [0]
                 div(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                 if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                                  [0 0]      [0 1]      [0 1]      [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Weak Trs:
                  {  minus(s(X), s(Y)) -> minus(X, Y)
                   , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                   , geq(s(X), s(Y)) -> geq(X, Y)
                   , if(true(), X, Y) -> X
                   , if(false(), X, Y) -> Y
                   , minus(0(), Y) -> 0()
                   , geq(X, 0()) -> true()
                   , geq(0(), s(Y)) -> false()
                   , div(0(), s(Y)) -> 0()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                We consider the following Problem:
                
                  Weak Trs:
                    {  minus(s(X), s(Y)) -> minus(X, Y)
                     , div(s(X), s(Y)) -> if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                     , geq(s(X), s(Y)) -> geq(X, Y)
                     , if(true(), X, Y) -> X
                     , if(false(), X, Y) -> Y
                     , minus(0(), Y) -> 0()
                     , geq(X, 0()) -> true()
                     , geq(0(), s(Y)) -> false()
                     , div(0(), s(Y)) -> 0()}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))