(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(s(x), s(y)), s(y)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c4(LE(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(LE(x1, x2)) = [2]x1
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = [3]
POL(s(x1)) = [4] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
QUOT(
s(
z0),
s(
z1)) →
c6(
QUOT(
minus(
s(
z0),
s(
z1)),
s(
z1)),
MINUS(
s(
z0),
s(
z1))) by
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
QUOT(s(x0), s(x1)) → c6
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
QUOT(s(x0), s(x1)) → c6
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
QUOT(s(x0), s(x1)) → c6
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6, c6
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
QUOT(s(x0), s(x1)) → c6
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(LE(x1, x2)) = [3]x2
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = [2]x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [4] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(LE(x1, x2)) = [2]x1 + [3]x2 + x1·x2 + x12
POL(MINUS(x1, x2)) = [1] + x1
POL(QUOT(x1, x2)) = [2]x12
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:none
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
minus, le, quot
Defined Pair Symbols:
MINUS, LE, QUOT
Compound Symbols:
c1, c4, c6
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))