(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(x, y) → f(x, y, x)
f(0, 1, x) → h(x, x)
g(x, y) → x
g(x, y) → y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, z1) → f(z0, z1, z0)
f(0, 1, z0) → h(z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
H(z0, z1) → c(F(z0, z1, z0))
F(0, 1, z0) → c1(H(z0, z0))
S tuples:
H(z0, z1) → c(F(z0, z1, z0))
F(0, 1, z0) → c1(H(z0, z0))
K tuples:none
Defined Rule Symbols:
h, f, g
Defined Pair Symbols:
H, F
Compound Symbols:
c, c1
(3) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
H(
z0,
z1) →
c(
F(
z0,
z1,
z0)) by
H(x0, x0) → c(F(x0, x0, x0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, z1) → f(z0, z1, z0)
f(0, 1, z0) → h(z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
F(0, 1, z0) → c1(H(z0, z0))
H(x0, x0) → c(F(x0, x0, x0))
S tuples:
F(0, 1, z0) → c1(H(z0, z0))
H(x0, x0) → c(F(x0, x0, x0))
K tuples:none
Defined Rule Symbols:
h, f, g
Defined Pair Symbols:
F, H
Compound Symbols:
c1, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
F(0, 1, z0) → c1(H(z0, z0))
H(x0, x0) → c(F(x0, x0, x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, z1) → f(z0, z1, z0)
f(0, 1, z0) → h(z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
h, f, g
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))