(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

g(x, x, x) → g(c, d, e)
g(x, y, x) → g(c, d, e)
s(f(x, y)) → f(y, f(s(s(x)), a))
h(h(x, a), y) → h(h(a, y), h(a, x))
f(x, f(y, f(x, y))) → f(a, f(x, f(y, b)))
f(h(a, y), g(x, b, a)) → h(f(x, s(y)), s(b))
h(f(x, s(y)), b) → f(a, g(y, a, f(s(x), a)))
f(x, g(x, a, f(s(x), y))) → f(h(x, b), g(a, b, y))
s(y) → b

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

g(z0, z0, z0) → g(c, d, e)
g(z0, z1, z0) → g(c, d, e)
s(f(z0, z1)) → f(z1, f(s(s(z0)), a))
s(z0) → b
h(h(z0, a), z1) → h(h(a, z1), h(a, z0))
h(f(z0, s(z1)), b) → f(a, g(z1, a, f(s(z0), a)))
f(z0, f(z1, f(z0, z1))) → f(a, f(z0, f(z1, b)))
f(h(a, z0), g(z1, b, a)) → h(f(z1, s(z0)), s(b))
f(z0, g(z0, a, f(s(z0), z1))) → f(h(z0, b), g(a, b, z1))
Tuples:

G(z0, z0, z0) → c1(G(c, d, e))
G(z0, z1, z0) → c2(G(c, d, e))
S(f(z0, z1)) → c3(F(z1, f(s(s(z0)), a)), F(s(s(z0)), a), S(s(z0)), S(z0))
H(h(z0, a), z1) → c5(H(h(a, z1), h(a, z0)), H(a, z1), H(a, z0))
H(f(z0, s(z1)), b) → c6(F(a, g(z1, a, f(s(z0), a))), G(z1, a, f(s(z0), a)), F(s(z0), a), S(z0))
F(z0, f(z1, f(z0, z1))) → c7(F(a, f(z0, f(z1, b))), F(z0, f(z1, b)), F(z1, b))
F(h(a, z0), g(z1, b, a)) → c8(H(f(z1, s(z0)), s(b)), F(z1, s(z0)), S(z0), S(b))
F(z0, g(z0, a, f(s(z0), z1))) → c9(F(h(z0, b), g(a, b, z1)), H(z0, b), G(a, b, z1))
S tuples:

G(z0, z0, z0) → c1(G(c, d, e))
G(z0, z1, z0) → c2(G(c, d, e))
S(f(z0, z1)) → c3(F(z1, f(s(s(z0)), a)), F(s(s(z0)), a), S(s(z0)), S(z0))
H(h(z0, a), z1) → c5(H(h(a, z1), h(a, z0)), H(a, z1), H(a, z0))
H(f(z0, s(z1)), b) → c6(F(a, g(z1, a, f(s(z0), a))), G(z1, a, f(s(z0), a)), F(s(z0), a), S(z0))
F(z0, f(z1, f(z0, z1))) → c7(F(a, f(z0, f(z1, b))), F(z0, f(z1, b)), F(z1, b))
F(h(a, z0), g(z1, b, a)) → c8(H(f(z1, s(z0)), s(b)), F(z1, s(z0)), S(z0), S(b))
F(z0, g(z0, a, f(s(z0), z1))) → c9(F(h(z0, b), g(a, b, z1)), H(z0, b), G(a, b, z1))
K tuples:none
Defined Rule Symbols:

g, s, h, f

Defined Pair Symbols:

G, S, H, F

Compound Symbols:

c1, c2, c3, c5, c6, c7, c8, c9

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

S(f(z0, z1)) → c3(F(z1, f(s(s(z0)), a)), F(s(s(z0)), a), S(s(z0)), S(z0))
H(h(z0, a), z1) → c5(H(h(a, z1), h(a, z0)), H(a, z1), H(a, z0))
H(f(z0, s(z1)), b) → c6(F(a, g(z1, a, f(s(z0), a))), G(z1, a, f(s(z0), a)), F(s(z0), a), S(z0))
F(z0, f(z1, f(z0, z1))) → c7(F(a, f(z0, f(z1, b))), F(z0, f(z1, b)), F(z1, b))
F(h(a, z0), g(z1, b, a)) → c8(H(f(z1, s(z0)), s(b)), F(z1, s(z0)), S(z0), S(b))
F(z0, g(z0, a, f(s(z0), z1))) → c9(F(h(z0, b), g(a, b, z1)), H(z0, b), G(a, b, z1))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

g(z0, z0, z0) → g(c, d, e)
g(z0, z1, z0) → g(c, d, e)
s(f(z0, z1)) → f(z1, f(s(s(z0)), a))
s(z0) → b
h(h(z0, a), z1) → h(h(a, z1), h(a, z0))
h(f(z0, s(z1)), b) → f(a, g(z1, a, f(s(z0), a)))
f(z0, f(z1, f(z0, z1))) → f(a, f(z0, f(z1, b)))
f(h(a, z0), g(z1, b, a)) → h(f(z1, s(z0)), s(b))
f(z0, g(z0, a, f(s(z0), z1))) → f(h(z0, b), g(a, b, z1))
Tuples:

G(z0, z0, z0) → c1(G(c, d, e))
G(z0, z1, z0) → c2(G(c, d, e))
S tuples:

G(z0, z0, z0) → c1(G(c, d, e))
G(z0, z1, z0) → c2(G(c, d, e))
K tuples:none
Defined Rule Symbols:

g, s, h, f

Defined Pair Symbols:

G

Compound Symbols:

c1, c2

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

G(z0, z1, z0) → c2(G(c, d, e))
G(z0, z0, z0) → c1(G(c, d, e))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

g(z0, z0, z0) → g(c, d, e)
g(z0, z1, z0) → g(c, d, e)
s(f(z0, z1)) → f(z1, f(s(s(z0)), a))
s(z0) → b
h(h(z0, a), z1) → h(h(a, z1), h(a, z0))
h(f(z0, s(z1)), b) → f(a, g(z1, a, f(s(z0), a)))
f(z0, f(z1, f(z0, z1))) → f(a, f(z0, f(z1, b)))
f(h(a, z0), g(z1, b, a)) → h(f(z1, s(z0)), s(b))
f(z0, g(z0, a, f(s(z0), z1))) → f(h(z0, b), g(a, b, z1))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

g, s, h, f

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))