We consider the following Problem: Strict Trs: { min(0(), y) -> 0() , min(x, 0()) -> 0() , min(s(x), s(y)) -> s(min(x, y)) , max(0(), y) -> y , max(x, 0()) -> x , max(s(x), s(y)) -> s(max(x, y)) , twice(0()) -> 0() , twice(s(x)) -> s(s(twice(x))) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , p(s(x)) -> x , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { min(0(), y) -> 0() , min(x, 0()) -> 0() , min(s(x), s(y)) -> s(min(x, y)) , max(0(), y) -> y , max(x, 0()) -> x , max(s(x), s(y)) -> s(max(x, y)) , twice(0()) -> 0() , twice(s(x)) -> s(s(twice(x))) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , p(s(x)) -> x , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [1 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] max(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] twice(x1) = [1 0] x1 + [1] [0 0] [1] -(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] p(x1) = [1 0] x1 + [1] [0 0] [1] f(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(x), s(y)) -> s(min(x, y)) , max(0(), y) -> y , max(x, 0()) -> x , max(s(x), s(y)) -> s(max(x, y)) , twice(s(x)) -> s(s(twice(x))) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , p(s(x)) -> x , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} Weak Trs: { min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {max(x, 0()) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [0] 0() = [1] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] max(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] twice(x1) = [1 0] x1 + [0] [0 0] [0] -(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] p(x1) = [1 0] x1 + [0] [0 0] [0] f(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(x), s(y)) -> s(min(x, y)) , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , twice(s(x)) -> s(s(twice(x))) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , p(s(x)) -> x , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} Weak Trs: { max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [1 0] [1 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [1] [0 1] [2] max(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 1] [1] twice(x1) = [1 0] x1 + [0] [0 1] [0] -(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 1] [0 1] [2] p(x1) = [1 0] x1 + [0] [0 0] [3] f(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(x), s(y)) -> s(min(x, y)) , twice(s(x)) -> s(s(twice(x))) , p(s(x)) -> x , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} Weak Trs: { max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [1 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] max(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] twice(x1) = [1 0] x1 + [0] [0 0] [1] -(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [1] p(x1) = [1 0] x1 + [2] [0 1] [0] f(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(x), s(y)) -> s(min(x, y)) , twice(s(x)) -> s(s(twice(x))) , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} Weak Trs: { p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y))))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 1] [1] max(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] twice(x1) = [1 2] x1 + [0] [0 0] [0] -(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] p(x1) = [1 0] x1 + [1] [0 1] [0] f(x1, x2) = [1 0] x1 + [1 2] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(x), s(y)) -> s(min(x, y)) , twice(s(x)) -> s(s(twice(x)))} Weak Trs: { f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {min(s(x), s(y)) -> s(min(x, y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(min) = {}, Uargs(s) = {1}, Uargs(max) = {}, Uargs(twice) = {1}, Uargs(-) = {1, 2}, Uargs(p) = {1}, Uargs(f) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: min(x1, x2) = [0 0] x1 + [0 1] x2 + [0] [0 0] [0 1] [0] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 1] [1] max(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] twice(x1) = [1 0] x1 + [0] [0 0] [0] -(x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 0] [1] p(x1) = [1 0] x1 + [0] [0 1] [0] f(x1, x2) = [1 0] x1 + [1 3] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {twice^#(s(x)) -> twice^#(x)} Weak DPs: { min^#(s(x), s(y)) -> min^#(x, y) , f^#(s(x), s(y)) -> f^#(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p^#(s(x)) -> c_4() , max^#(0(), y) -> c_5() , max^#(s(x), s(y)) -> max^#(x, y) , -^#(x, 0()) -> c_7() , -^#(s(x), s(y)) -> -^#(x, y) , max^#(x, 0()) -> c_9() , min^#(0(), y) -> c_10() , min^#(x, 0()) -> c_11() , twice^#(0()) -> c_12()} We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: { min^#(s(x), s(y)) -> min^#(x, y) , f^#(s(x), s(y)) -> f^#(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p^#(s(x)) -> c_4() , max^#(0(), y) -> c_5() , max^#(s(x), s(y)) -> max^#(x, y) , -^#(x, 0()) -> c_7() , -^#(s(x), s(y)) -> -^#(x, y) , max^#(x, 0()) -> c_9() , min^#(0(), y) -> c_10() , min^#(x, 0()) -> c_11() , twice^#(0()) -> c_12()} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , f(s(x), s(y)) -> f(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {twice(s(x)) -> s(s(twice(x)))} Weak Usable Rules: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: { min^#(s(x), s(y)) -> min^#(x, y) , f^#(s(x), s(y)) -> f^#(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p^#(s(x)) -> c_4() , max^#(0(), y) -> c_5() , max^#(s(x), s(y)) -> max^#(x, y) , -^#(x, 0()) -> c_7() , -^#(s(x), s(y)) -> -^#(x, y) , max^#(x, 0()) -> c_9() , min^#(0(), y) -> c_10() , min^#(x, 0()) -> c_11() , twice^#(0()) -> c_12()} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: { min^#(s(x), s(y)) -> min^#(x, y) , f^#(s(x), s(y)) -> f^#(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , p^#(s(x)) -> c_4() , max^#(0(), y) -> c_5() , max^#(s(x), s(y)) -> max^#(x, y) , -^#(x, 0()) -> c_7() , -^#(s(x), s(y)) -> -^#(x, y) , max^#(x, 0()) -> c_9() , min^#(0(), y) -> c_10() , min^#(x, 0()) -> c_11() , twice^#(0()) -> c_12()} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->11:{1} [ YES(?,O(n^1)) ] | `->12:{12} [ YES(O(1),O(1)) ] ->8:{2} [ subsumed ] | |->9:{10} [ YES(O(1),O(1)) ] | `->10:{11} [ YES(O(1),O(1)) ] ->7:{3} [ YES(O(1),O(1)) ] ->6:{4} [ YES(O(1),O(1)) ] ->3:{6} [ subsumed ] | |->5:{5} [ YES(O(1),O(1)) ] | `->4:{9} [ YES(O(1),O(1)) ] ->1:{8} [ subsumed ] | `->2:{7} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: twice^#(s(x)) -> twice^#(x)} WeakDPs DPs: { 2: min^#(s(x), s(y)) -> min^#(x, y) , 3: f^#(s(x), s(y)) -> f^#(-(max(s(x), s(y)), min(s(x), s(y))), p(twice(min(x, y)))) , 4: p^#(s(x)) -> c_4() , 5: max^#(0(), y) -> c_5() , 6: max^#(s(x), s(y)) -> max^#(x, y) , 7: -^#(x, 0()) -> c_7() , 8: -^#(s(x), s(y)) -> -^#(x, y) , 9: max^#(x, 0()) -> c_9() , 10: min^#(0(), y) -> c_10() , 11: min^#(x, 0()) -> c_11() , 12: twice^#(0()) -> c_12()} * Path 11:{1}: YES(?,O(n^1)) -------------------------- We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {twice^#(s(x)) -> twice^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , twice^#_0(2) -> 1 , twice^#_1(2) -> 1} * Path 11:{1}->12:{12}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {twice^#(s(x)) -> twice^#(x)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {twice^#(s(x)) -> twice^#(x)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {twice^#(s(x)) -> twice^#(x)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {twice^#(s(x)) -> twice^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{2}: subsumed -------------------- This path is subsumed by the proof of paths 8:{2}->10:{11}, 8:{2}->9:{10}. * Path 8:{2}->9:{10}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{2}->10:{11}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {min^#(s(x), s(y)) -> min^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 7:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{4}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{6}: subsumed -------------------- This path is subsumed by the proof of paths 3:{6}->5:{5}, 3:{6}->4:{9}. * Path 3:{6}->5:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{6}->4:{9}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {max^#(s(x), s(y)) -> max^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{8}: subsumed -------------------- This path is subsumed by the proof of paths 1:{8}->2:{7}. * Path 1:{8}->2:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {-^#(s(x), s(y)) -> -^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {-^#(s(x), s(y)) -> -^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {twice(s(x)) -> s(s(twice(x)))} Weak DPs: {-^#(s(x), s(y)) -> -^#(x, y)} Weak Trs: { min(s(x), s(y)) -> s(min(x, y)) , p(s(x)) -> x , max(0(), y) -> y , max(s(x), s(y)) -> s(max(x, y)) , -(x, 0()) -> x , -(s(x), s(y)) -> -(x, y) , max(x, 0()) -> x , min(0(), y) -> 0() , min(x, 0()) -> 0() , twice(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {-^#(s(x), s(y)) -> -^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))