(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(x, f(y, x)) → f(f(x, x), f(a, y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(z0, f(z1, z0)) → c(F(f(z0, z0), f(a, z1)), F(z0, z0), F(a, z1))
S tuples:

F(z0, f(z1, z0)) → c(F(f(z0, z0), f(a, z1)), F(z0, z0), F(a, z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(z0, f(z1, z0)) → c(F(f(z0, z0), f(a, z1)), F(z0, z0), F(a, z1)) by

F(x0, f(x1, x0)) → c(F(f(x0, x0), f(a, x1)), F(a, x1))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(x0, f(x1, x0)) → c(F(f(x0, x0), f(a, x1)), F(a, x1))
S tuples:

F(x0, f(x1, x0)) → c(F(f(x0, x0), f(a, x1)), F(a, x1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(x0, f(x1, x0)) → c(F(f(x0, x0), f(a, x1)), F(a, x1)) by

F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1))
F(a, f(z1, a)) → c(F(f(a, a), f(a, z1)), F(a, z1))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1))
F(a, f(z1, a)) → c(F(f(a, a), f(a, z1)), F(a, z1))
S tuples:

F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1))
F(a, f(z1, a)) → c(F(f(a, a), f(a, z1)), F(a, z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(a, f(z1, a)) → c(F(f(a, a), f(a, z1)), F(a, z1)) by

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(a, f(x0, a)) → c(F(a, x0))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1))
F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(a, f(x0, a)) → c(F(a, x0))
S tuples:

F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1))
F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(a, f(x0, a)) → c(F(a, x0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(9) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(x0, x0), f(z1, f(x0, x0))) → c(F(f(f(x0, x0), f(x0, x0)), f(a, z1)), F(a, z1)) by

F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(a, f(x0, a)) → c(F(a, x0))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
S tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(a, f(x0, a)) → c(F(a, x0))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(11) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(a, f(x0, a)) → c(F(a, x0)) by

F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(y0, a), a)) → c(F(a, f(y0, a)))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(y0, a), a)) → c(F(a, f(y0, a)))
S tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(y0, a), a)) → c(F(a, f(y0, a)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(13) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace F(a, f(f(y0, a), a)) → c(F(a, f(y0, a))) by

F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(f(f(y0, a), a), a), a)) → c(F(a, f(f(f(y0, a), a), a)))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, f(z1, z0)) → f(f(z0, z0), f(a, z1))
Tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(f(f(y0, a), a), a), a)) → c(F(a, f(f(f(y0, a), a), a)))
S tuples:

F(a, f(f(z1, a), a)) → c(F(f(a, a), f(f(a, a), f(a, z1))), F(a, f(z1, a)))
F(f(f(x0, x0), f(x0, x0)), f(z1, f(f(x0, x0), f(x0, x0)))) → c(F(f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))), f(a, z1)), F(a, z1))
F(f(a, a), f(z1, f(a, a))) → c(F(f(f(a, a), f(a, a)), f(a, z1)), F(a, z1))
F(a, f(f(f(y0, a), a), a)) → c(F(a, f(f(y0, a), a)))
F(a, f(f(f(f(y0, a), a), a), a)) → c(F(a, f(f(f(y0, a), a), a)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c, c

(15) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match(-raise)-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.

The compatible tree automaton used to show the Match(-raise)-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
f0(0, 0) → 1

(16) BOUNDS(O(1), O(n^1))