We consider the following Problem: Strict Trs: { c(c(z, y, a()), a(), a()) -> b(z, y) , f(c(x, y, z)) -> c(z, f(b(y, z)), a()) , b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { c(c(z, y, a()), a(), a()) -> b(z, y) , f(c(x, y, z)) -> c(z, f(b(y, z)), a()) , b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { c(c(z, y, a()), a(), a()) -> b(z, y) , f(c(x, y, z)) -> c(z, f(b(y, z)), a()) , b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The following argument positions are usable: Uargs(c) = {1, 2}, Uargs(b) = {}, Uargs(f) = {1} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: c(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0] [1 0] [0 0] [2 1] [2] a() = [1] [0] b(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] f(x1) = [1 2] x1 + [1] [1 1] [2] Hurray, we answered YES(?,O(n^1))