(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

b(a, f(b(b(z, y), a))) → z
c(c(z, x, a), a, y) → f(f(c(y, a, f(c(z, y, x)))))
f(f(c(a, y, z))) → b(y, b(z, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

b(a, f(b(b(z0, z1), a))) → z0
c(c(z0, z1, a), a, z2) → f(f(c(z2, a, f(c(z0, z2, z1)))))
f(f(c(a, z0, z1))) → b(z0, b(z1, z1))
Tuples:

C(c(z0, z1, a), a, z2) → c2(F(f(c(z2, a, f(c(z0, z2, z1))))), F(c(z2, a, f(c(z0, z2, z1)))), C(z2, a, f(c(z0, z2, z1))), F(c(z0, z2, z1)), C(z0, z2, z1))
F(f(c(a, z0, z1))) → c3(B(z0, b(z1, z1)), B(z1, z1))
S tuples:

C(c(z0, z1, a), a, z2) → c2(F(f(c(z2, a, f(c(z0, z2, z1))))), F(c(z2, a, f(c(z0, z2, z1)))), C(z2, a, f(c(z0, z2, z1))), F(c(z0, z2, z1)), C(z0, z2, z1))
F(f(c(a, z0, z1))) → c3(B(z0, b(z1, z1)), B(z1, z1))
K tuples:none
Defined Rule Symbols:

b, c, f

Defined Pair Symbols:

C, F

Compound Symbols:

c2, c3

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

C(c(z0, z1, a), a, z2) → c2(F(f(c(z2, a, f(c(z0, z2, z1))))), F(c(z2, a, f(c(z0, z2, z1)))), C(z2, a, f(c(z0, z2, z1))), F(c(z0, z2, z1)), C(z0, z2, z1))
F(f(c(a, z0, z1))) → c3(B(z0, b(z1, z1)), B(z1, z1))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

b(a, f(b(b(z0, z1), a))) → z0
c(c(z0, z1, a), a, z2) → f(f(c(z2, a, f(c(z0, z2, z1)))))
f(f(c(a, z0, z1))) → b(z0, b(z1, z1))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

b, c, f

Defined Pair Symbols:none

Compound Symbols:none

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))