(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(c(a, z, x)) → b(a, z)
b(x, b(z, y)) → f(b(f(f(z)), c(x, z, y)))
b(y, z) → z

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(c(a, z0, z1)) → b(a, z0)
b(z0, b(z1, z2)) → f(b(f(f(z1)), c(z0, z1, z2)))
b(z0, z1) → z1
Tuples:

F(c(a, z0, z1)) → c1(B(a, z0))
B(z0, b(z1, z2)) → c2(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1))
S tuples:

F(c(a, z0, z1)) → c1(B(a, z0))
B(z0, b(z1, z2)) → c2(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1))
K tuples:none
Defined Rule Symbols:

f, b

Defined Pair Symbols:

F, B

Compound Symbols:

c1, c2

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

B(z0, b(z1, z2)) → c2(F(b(f(f(z1)), c(z0, z1, z2))), B(f(f(z1)), c(z0, z1, z2)), F(f(z1)), F(z1))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(c(a, z0, z1)) → b(a, z0)
b(z0, b(z1, z2)) → f(b(f(f(z1)), c(z0, z1, z2)))
b(z0, z1) → z1
Tuples:

F(c(a, z0, z1)) → c1(B(a, z0))
S tuples:

F(c(a, z0, z1)) → c1(B(a, z0))
K tuples:none
Defined Rule Symbols:

f, b

Defined Pair Symbols:

F

Compound Symbols:

c1

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(c(a, z0, z1)) → c1(B(a, z0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(c(a, z0, z1)) → b(a, z0)
b(z0, b(z1, z2)) → f(b(f(f(z1)), c(z0, z1, z2)))
b(z0, z1) → z1
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, b

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))