(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(x, y) → b(x, b(0, c(y)))
c(b(y, c(x))) → c(c(b(a(0, 0), y)))
b(y, 0) → y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(B(z0, b(0, c(z1))), B(0, c(z1)), C(z1))
C(b(z0, c(z1))) → c2(C(c(b(a(0, 0), z0))), C(b(a(0, 0), z0)), B(a(0, 0), z0), A(0, 0))
S tuples:
A(z0, z1) → c1(B(z0, b(0, c(z1))), B(0, c(z1)), C(z1))
C(b(z0, c(z1))) → c2(C(c(b(a(0, 0), z0))), C(b(a(0, 0), z0)), B(a(0, 0), z0), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(z0, c(z1))) → c2(C(c(b(a(0, 0), z0))), C(b(a(0, 0), z0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(z0, c(z1))) → c2(C(c(b(a(0, 0), z0))), C(b(a(0, 0), z0)), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
b(
z0,
c(
z1))) →
c2(
C(
c(
b(
a(
0,
0),
z0))),
C(
b(
a(
0,
0),
z0)),
A(
0,
0)) by
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), a(0, 0))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(x0, c(x1))) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), a(0, 0))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(x0, c(x1))) → c2
S tuples:
A(z0, z1) → c1(C(z1))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), a(0, 0))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(x0, c(x1))) → c2
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
C(b(x0, c(x1))) → c2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), a(0, 0))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), a(0, 0))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
b(
c(
z1),
c(
x1))) →
c2(
C(
c(
c(
b(
a(
0,
0),
a(
0,
0))))),
C(
b(
a(
0,
0),
c(
z1))),
A(
0,
0)) by
C(b(c(x0), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2
(11) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(0, c(x1))) → c2(C(c(a(0, 0))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
b(
0,
c(
x1))) →
c2(
C(
c(
a(
0,
0))),
C(
b(
a(
0,
0),
0)),
A(
0,
0)) by
C(b(0, c(x0))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(x0, c(x1))) → c2(C(c(b(b(0, b(0, c(0))), x0))), C(b(a(0, 0), x0)), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
b(
x0,
c(
x1))) →
c2(
C(
c(
b(
b(
0,
b(
0,
c(
0))),
x0))),
C(
b(
a(
0,
0),
x0)),
A(
0,
0)) by
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(c(z1), c(x1))) → c2(C(c(c(b(a(0, 0), b(0, b(0, c(0))))))), C(b(a(0, 0), c(z1))), A(0, 0))
C(b(0, c(x1))) → c2(C(c(b(0, b(0, c(0))))), C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
We considered the (Usable) Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
b(z0, 0) → z0
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
And the Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(A(x1, x2)) = [2]x2
POL(C(x1)) = [2]x1
POL(a(x1, x2)) = x1 + [4]x2
POL(b(x1, x2)) = x1
POL(c(x1)) = [1]
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c2(x1, x2, x3)) = x1 + x2 + x3
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
K tuples:
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
We considered the (Usable) Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
b(z0, 0) → z0
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
And the Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(A(x1, x2)) = [5]x2
POL(C(x1)) = [4]x1
POL(a(x1, x2)) = [4]x1 + [5]x2
POL(b(x1, x2)) = [4]x1
POL(c(x1)) = [2]
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c2(x1, x2, x3)) = x1 + x2 + x3
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(z0, z1) → c1(C(z1))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
S tuples:
A(z0, z1) → c1(C(z1))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
K tuples:
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2, c2, c2
(25) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
A(
z0,
z1) →
c1(
C(
z1)) by
A(0, 0) → c1(C(0))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
A(0, 0) → c1(C(0))
S tuples:
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
A(0, 0) → c1(C(0))
K tuples:
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
C, A
Compound Symbols:
c2, c2, c2, c1
(27) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
C(b(c(x0), c(x1))) → c2(C(c(c(b(b(0, b(0, c(0))), a(0, 0))))), C(b(a(0, 0), c(x0))), A(0, 0))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))))
C(b(c(x0), c(x1))) → c2(C(b(a(0, 0), c(x0))), A(0, 0))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)))
C(b(0, c(x0))) → c2(C(b(a(0, 0), 0)), A(0, 0))
C(b(x0, c(x1))) → c2(C(b(a(0, 0), x0)), A(0, 0))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:
A(0, 0) → c1(C(0))
S tuples:
A(0, 0) → c1(C(0))
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:
A
Compound Symbols:
c1
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(0, 0) → c1(C(0))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0, z1) → b(z0, b(0, c(z1)))
c(b(z0, c(z1))) → c(c(b(a(0, 0), z0)))
b(z0, 0) → z0
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
a, c, b
Defined Pair Symbols:none
Compound Symbols:none
(31) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(32) BOUNDS(O(1), O(1))