(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
b(b(0, y), x) → y
c(c(c(y))) → c(c(a(a(c(b(0, y)), 0), 0)))
a(y, 0) → b(y, 0)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(z0))) → c2(C(c(a(a(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(a(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
A(z0, 0) → c3(B(z0, 0))
S tuples:
C(c(c(z0))) → c2(C(c(a(a(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(a(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
A(z0, 0) → c3(B(z0, 0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C, A
Compound Symbols:
c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(z0, 0) → c3(B(z0, 0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(z0))) → c2(C(c(a(a(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(a(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
S tuples:
C(c(c(z0))) → c2(C(c(a(a(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(a(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
z0))) →
c2(
C(
c(
a(
a(
c(
b(
0,
z0)),
0),
0))),
C(
a(
a(
c(
b(
0,
z0)),
0),
0)),
A(
a(
c(
b(
0,
z0)),
0),
0),
A(
c(
b(
0,
z0)),
0),
C(
b(
0,
z0)),
B(
0,
z0)) by
C(c(c(x0))) → c2(C(c(b(a(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(a(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2
S tuples:
C(c(c(x0))) → c2(C(c(b(a(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
C(c(c(x0))) → c2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(a(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
S tuples:
C(c(c(x0))) → c2(C(c(b(a(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
x0))) →
c2(
C(
c(
b(
a(
c(
b(
0,
x0)),
0),
0))),
C(
a(
a(
c(
b(
0,
x0)),
0),
0)),
A(
a(
c(
b(
0,
x0)),
0),
0),
A(
c(
b(
0,
x0)),
0),
C(
b(
0,
x0)),
B(
0,
x0)) by
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
S tuples:
C(c(c(x0))) → c2(C(c(a(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
x0))) →
c2(
C(
c(
a(
b(
c(
b(
0,
x0)),
0),
0))),
C(
a(
a(
c(
b(
0,
x0)),
0),
0)),
A(
a(
c(
b(
0,
x0)),
0),
0),
A(
c(
b(
0,
x0)),
0),
C(
b(
0,
x0)),
B(
0,
x0)) by
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
S tuples:
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2, c2
(13) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0)) by C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
S tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2, c2
(15) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0))) by C(c(c(z0))) → c2(C(b(a(c(b(0, z0)), 0), 0)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(z0))) → c2(C(b(a(c(b(0, z0)), 0), 0)))
S tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(z0))) → c2(C(b(a(c(b(0, z0)), 0), 0)))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
z0))) →
c2(
C(
b(
a(
c(
b(
0,
z0)),
0),
0))) by
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0))
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
S tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2, c2, c2
(19) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace C(c(c(x0))) → c2(C(c(b(b(c(b(0, x0)), 0), 0))), C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0), A(c(b(0, x0)), 0), C(b(0, x0)), B(0, x0)) by C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
S tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2, c2, c2
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
C(c(c(x0))) → c2(C(b(b(c(b(0, x0)), 0), 0)))
C(c(c(x0))) → c2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(0, z0), z1) → z0
c(c(c(z0))) → c(c(a(a(c(b(0, z0)), 0), 0)))
a(z0, 0) → b(z0, 0)
Tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
S tuples:
C(c(c(x0))) → c2(C(a(a(c(b(0, x0)), 0), 0)), A(a(c(b(0, x0)), 0), 0))
C(c(c(z0))) → c2(C(c(b(b(c(b(0, z0)), 0), 0))), C(a(a(c(b(0, z0)), 0), 0)), A(b(c(b(0, z0)), 0), 0), A(c(b(0, z0)), 0), C(b(0, z0)), B(0, z0))
K tuples:none
Defined Rule Symbols:
b, c, a
Defined Pair Symbols:
C
Compound Symbols:
c2, c2
(23) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
00() → 0
b0(0, 0) → 1
c0(0) → 2
a0(0, 0) → 3
01() → 4
b1(0, 4) → 3
(24) BOUNDS(O(1), O(n^1))