(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(0, b(0, x)) → b(0, a(0, x))
a(0, x) → b(0, b(0, x))
a(0, a(1, a(x, y))) → a(1, a(0, a(x, y)))
b(0, a(1, a(x, y))) → b(1, a(0, a(x, y)))
a(0, a(x, y)) → a(1, a(1, a(x, y)))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, b(0, z0)) → c(B(0, a(0, z0)), A(0, z0))
A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(1, a(0, a(z0, z1))), A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(1, a(1, a(z0, z1))), A(1, a(z0, z1)), A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(B(1, a(0, a(z0, z1))), A(0, a(z0, z1)), A(z0, z1))
S tuples:

A(0, b(0, z0)) → c(B(0, a(0, z0)), A(0, z0))
A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(1, a(0, a(z0, z1))), A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(1, a(1, a(z0, z1))), A(1, a(z0, z1)), A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(B(1, a(0, a(z0, z1))), A(0, a(z0, z1)), A(z0, z1))
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c, c1, c2, c3, c4

(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, b(0, z0)) → c(B(0, a(0, z0)), A(0, z0))
A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
S tuples:

A(0, b(0, z0)) → c(B(0, a(0, z0)), A(0, z0))
A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c, c1, c2, c3, c4

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace A(0, b(0, z0)) → c(B(0, a(0, z0)), A(0, z0)) by

A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, z0)) → c(B(0, b(0, b(0, z0))), A(0, z0))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, x0)) → c

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, z0)) → c(B(0, b(0, b(0, z0))), A(0, z0))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, x0)) → c
S tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, z0)) → c(B(0, b(0, b(0, z0))), A(0, z0))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, x0)) → c
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c1, c2, c3, c4, c, c

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

A(0, b(0, x0)) → c

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, z0)) → c(B(0, b(0, b(0, z0))), A(0, z0))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
S tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, z0)) → c(B(0, b(0, b(0, z0))), A(0, z0))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c1, c2, c3, c4, c

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, z0)) → c(A(0, z0))
S tuples:

A(0, z0) → c1(B(0, b(0, z0)), B(0, z0))
A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, z0)) → c(A(0, z0))
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c1, c2, c3, c4, c, c

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace A(0, z0) → c1(B(0, b(0, z0)), B(0, z0)) by

A(0, a(1, a(z0, z1))) → c1(B(0, b(1, a(0, a(z0, z1)))), B(0, a(1, a(z0, z1))))
A(0, x0) → c1

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, z0)) → c(A(0, z0))
A(0, a(1, a(z0, z1))) → c1(B(0, b(1, a(0, a(z0, z1)))), B(0, a(1, a(z0, z1))))
A(0, x0) → c1
S tuples:

A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, z0)) → c(A(0, z0))
A(0, a(1, a(z0, z1))) → c1(B(0, b(1, a(0, a(z0, z1)))), B(0, a(1, a(z0, z1))))
A(0, x0) → c1
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A, B

Compound Symbols:

c2, c3, c4, c, c, c1, c1

(13) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

A(0, a(1, a(z0, z1))) → c2(A(0, a(z0, z1)), A(z0, z1))
A(0, a(z0, z1)) → c3(A(z0, z1))
B(0, a(1, a(z0, z1))) → c4(A(0, a(z0, z1)), A(z0, z1))
A(0, b(0, b(0, z0))) → c(B(0, b(0, a(0, z0))), A(0, b(0, z0)))
A(0, b(0, a(z0, z1))) → c(B(0, a(1, a(1, a(z0, z1)))), A(0, a(z0, z1)))
A(0, b(0, z0)) → c(A(0, z0))
A(0, a(1, a(z0, z1))) → c1(B(0, b(1, a(0, a(z0, z1)))), B(0, a(1, a(z0, z1))))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:

A(0, x0) → c1
S tuples:

A(0, x0) → c1
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:

A

Compound Symbols:

c1

(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

A(0, x0) → c1

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(0, b(0, z0)) → b(0, a(0, z0))
a(0, z0) → b(0, b(0, z0))
a(0, a(1, a(z0, z1))) → a(1, a(0, a(z0, z1)))
a(0, a(z0, z1)) → a(1, a(1, a(z0, z1)))
b(0, a(1, a(z0, z1))) → b(1, a(0, a(z0, z1)))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

a, b

Defined Pair Symbols:none

Compound Symbols:none

(17) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(18) BOUNDS(O(1), O(1))