(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(y, f(x, f(a, x))) → f(f(f(a, x), f(x, a)), f(a, y))
f(x, f(x, y)) → f(f(f(x, a), a), a)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, f(a, z1))) → f(f(f(a, z1), f(z1, a)), f(a, z0))
f(z0, f(z0, z1)) → f(f(f(z0, a), a), a)
Tuples:
F(z0, f(z1, f(a, z1))) → c(F(f(f(a, z1), f(z1, a)), f(a, z0)), F(f(a, z1), f(z1, a)), F(a, z1), F(z1, a), F(a, z0))
F(z0, f(z0, z1)) → c1(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a))
S tuples:
F(z0, f(z1, f(a, z1))) → c(F(f(f(a, z1), f(z1, a)), f(a, z0)), F(f(a, z1), f(z1, a)), F(a, z1), F(z1, a), F(a, z0))
F(z0, f(z0, z1)) → c1(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(z0, f(z0, z1)) → c1(F(f(f(z0, a), a), a), F(f(z0, a), a), F(z0, a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, f(a, z1))) → f(f(f(a, z1), f(z1, a)), f(a, z0))
f(z0, f(z0, z1)) → f(f(f(z0, a), a), a)
Tuples:
F(z0, f(z1, f(a, z1))) → c(F(f(f(a, z1), f(z1, a)), f(a, z0)), F(f(a, z1), f(z1, a)), F(a, z1), F(z1, a), F(a, z0))
S tuples:
F(z0, f(z1, f(a, z1))) → c(F(f(f(a, z1), f(z1, a)), f(a, z0)), F(f(a, z1), f(z1, a)), F(a, z1), F(z1, a), F(a, z0))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
z0,
f(
z1,
f(
a,
z1))) →
c(
F(
f(
f(
a,
z1),
f(
z1,
a)),
f(
a,
z0)),
F(
f(
a,
z1),
f(
z1,
a)),
F(
a,
z1),
F(
z1,
a),
F(
a,
z0)) by
F(f(z1, f(a, z1)), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, z1), f(z1, a)), f(a, a))), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(z1, f(a, z1))))
F(f(a, z1), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, a), a), a)), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(a, z1)))
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, f(a, z1))) → f(f(f(a, z1), f(z1, a)), f(a, z0))
f(z0, f(z0, z1)) → f(f(f(z0, a), a), a)
Tuples:
F(f(z1, f(a, z1)), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, z1), f(z1, a)), f(a, a))), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(z1, f(a, z1))))
F(f(a, z1), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, a), a), a)), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(a, z1)))
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
S tuples:
F(f(z1, f(a, z1)), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, z1), f(z1, a)), f(a, a))), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(z1, f(a, z1))))
F(f(a, z1), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, a), a), a)), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(a, z1)))
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(7) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 2 leading nodes:
F(f(z1, f(a, z1)), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, z1), f(z1, a)), f(a, a))), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(z1, f(a, z1))))
F(f(a, z1), f(x1, f(a, x1))) → c(F(f(f(a, x1), f(x1, a)), f(f(f(a, a), a), a)), F(f(a, x1), f(x1, a)), F(a, x1), F(x1, a), F(a, f(a, z1)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, f(a, z1))) → f(f(f(a, z1), f(z1, a)), f(a, z0))
f(z0, f(z0, z1)) → f(f(f(z0, a), a), a)
Tuples:
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
S tuples:
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
We considered the (Usable) Rules:none
And the Tuples:
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [3]x1 + x2
POL(a) = [5]
POL(c(x1)) = x1
POL(f(x1, x2)) = [4]x1 + [2]x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(z1, f(a, z1))) → f(f(f(a, z1), f(z1, a)), f(a, z0))
f(z0, f(z0, z1)) → f(f(f(z0, a), a), a)
Tuples:
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
S tuples:none
K tuples:
F(x0, f(x1, f(a, x1))) → c(F(a, x1))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))