(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(x, a), y) → f(f(a, y), f(a, x))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, a), z1) → f(f(a, z1), f(a, z0))
Tuples:

F(f(z0, a), z1) → c(F(f(a, z1), f(a, z0)), F(a, z1), F(a, z0))
S tuples:

F(f(z0, a), z1) → c(F(f(a, z1), f(a, z0)), F(a, z1), F(a, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(f(z0, a), z1) → c(F(f(a, z1), f(a, z0)), F(a, z1), F(a, z0)) by

F(f(x0, a), x1) → c(F(f(a, x1), f(a, x0)))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, a), z1) → f(f(a, z1), f(a, z0))
Tuples:

F(f(x0, a), x1) → c(F(f(a, x1), f(a, x0)))
S tuples:

F(f(x0, a), x1) → c(F(f(a, x1), f(a, x0)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(x0, a), x1) → c(F(f(a, x1), f(a, x0))) by

F(f(a, a), f(a, x0)) → c(F(f(a, f(a, x0)), f(a, a)))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, a), z1) → f(f(a, z1), f(a, z0))
Tuples:

F(f(a, a), f(a, x0)) → c(F(f(a, f(a, x0)), f(a, a)))
S tuples:

F(f(a, a), f(a, x0)) → c(F(f(a, f(a, x0)), f(a, a)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(f(a, a), f(a, x0)) → c(F(f(a, f(a, x0)), f(a, a)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, a), z1) → f(f(a, z1), f(a, z0))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:none

Compound Symbols:none

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))