(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
s(a) → a
s(s(x)) → x
s(f(x, y)) → f(s(y), s(x))
s(g(x, y)) → g(s(x), s(y))
f(x, a) → x
f(a, y) → y
f(g(x, y), g(u, v)) → g(f(x, u), f(y, v))
g(a, a) → a
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
s(a) → a
s(s(z0)) → z0
s(f(z0, z1)) → f(s(z1), s(z0))
s(g(z0, z1)) → g(s(z0), s(z1))
f(z0, a) → z0
f(a, z0) → z0
f(g(z0, z1), g(z2, z3)) → g(f(z0, z2), f(z1, z3))
g(a, a) → a
Tuples:
S(f(z0, z1)) → c2(F(s(z1), s(z0)), S(z1), S(z0))
S(g(z0, z1)) → c3(G(s(z0), s(z1)), S(z0), S(z1))
F(g(z0, z1), g(z2, z3)) → c6(G(f(z0, z2), f(z1, z3)), F(z0, z2), F(z1, z3))
S tuples:
S(f(z0, z1)) → c2(F(s(z1), s(z0)), S(z1), S(z0))
S(g(z0, z1)) → c3(G(s(z0), s(z1)), S(z0), S(z1))
F(g(z0, z1), g(z2, z3)) → c6(G(f(z0, z2), f(z1, z3)), F(z0, z2), F(z1, z3))
K tuples:none
Defined Rule Symbols:
s, f, g
Defined Pair Symbols:
S, F
Compound Symbols:
c2, c3, c6
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
S(f(z0, z1)) → c2(F(s(z1), s(z0)), S(z1), S(z0))
S(g(z0, z1)) → c3(G(s(z0), s(z1)), S(z0), S(z1))
F(g(z0, z1), g(z2, z3)) → c6(G(f(z0, z2), f(z1, z3)), F(z0, z2), F(z1, z3))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
s(a) → a
s(s(z0)) → z0
s(f(z0, z1)) → f(s(z1), s(z0))
s(g(z0, z1)) → g(s(z0), s(z1))
f(z0, a) → z0
f(a, z0) → z0
f(g(z0, z1), g(z2, z3)) → g(f(z0, z2), f(z1, z3))
g(a, a) → a
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
s, f, g
Defined Pair Symbols:none
Compound Symbols:none
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))