We consider the following Problem: Strict Trs: { f(g(i(a(), b(), b'()), c()), d()) -> if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) , f(g(h(a(), b()), c()), d()) -> if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(g(i(a(), b(), b'()), c()), d()) -> if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) , f(g(h(a(), b()), c()), d()) -> if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(g(i(a(), b(), b'()), c()), d()) -> if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) , f(g(h(a(), b()), c()), d()) -> if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(g) = {}, Uargs(i) = {}, Uargs(if) = {}, Uargs(.) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [0] g(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] i(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] a() = [0] [0] b() = [0] [0] b'() = [0] [0] c() = [0] [0] d() = [0] [0] if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] e() = [0] [0] .(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] d'() = [0] [0] h(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { f(g(i(a(), b(), b'()), c()), d()) -> if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) , f(g(h(a(), b()), c()), d()) -> if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { f(g(i(a(), b(), b'()), c()), d()) -> if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'())) , f(g(h(a(), b()), c()), d()) -> if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))