We consider the following Problem:
Strict Trs:
{ f(g(i(a(), b(), b'()), c()), d()) ->
if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
, f(g(h(a(), b()), c()), d()) ->
if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ f(g(i(a(), b(), b'()), c()), d()) ->
if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
, f(g(h(a(), b()), c()), d()) ->
if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ f(g(i(a(), b(), b'()), c()), d()) ->
if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
, f(g(h(a(), b()), c()), d()) ->
if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {}, Uargs(g) = {}, Uargs(i) = {}, Uargs(if) = {},
Uargs(.) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [0]
g(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
i(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
a() = [0]
[0]
b() = [0]
[0]
b'() = [0]
[0]
c() = [0]
[0]
d() = [0]
[0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
e() = [0]
[0]
.(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
d'() = [0]
[0]
h(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ f(g(i(a(), b(), b'()), c()), d()) ->
if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
, f(g(h(a(), b()), c()), d()) ->
if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ f(g(i(a(), b(), b'()), c()), d()) ->
if(e(), f(.(b(), c()), d'()), f(.(b'(), c()), d'()))
, f(g(h(a(), b()), c()), d()) ->
if(e(), f(.(b(), g(h(a(), b()), c())), d()), f(c(), d'()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))