We consider the following Problem:

  Strict Trs:
    {  f(x, nil()) -> g(nil(), x)
     , f(x, g(y, z)) -> g(f(x, y), z)
     , ++(x, nil()) -> x
     , ++(x, g(y, z)) -> g(++(x, y), z)
     , null(nil()) -> true()
     , null(g(x, y)) -> false()
     , mem(nil(), y) -> false()
     , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
     , mem(x, max(x)) -> not(null(x))
     , max(g(g(nil(), x), y)) -> max'(x, y)
     , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  f(x, nil()) -> g(nil(), x)
       , f(x, g(y, z)) -> g(f(x, y), z)
       , ++(x, nil()) -> x
       , ++(x, g(y, z)) -> g(++(x, y), z)
       , null(nil()) -> true()
       , null(g(x, y)) -> false()
       , mem(nil(), y) -> false()
       , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
       , mem(x, max(x)) -> not(null(x))
       , max(g(g(nil(), x), y)) -> max'(x, y)
       , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  null(nil()) -> true()
       , null(g(x, y)) -> false()
       , mem(nil(), y) -> false()
       , max(g(g(nil(), x), y)) -> max'(x, y)
       , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
        Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
        Uargs(not) = {1}, Uargs(max') = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       f(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                   [0 0]      [0 0]      [1]
       nil() = [0]
               [0]
       g(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                   [0 1]      [1 0]      [1]
       ++(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                    [0 0]      [0 0]      [1]
       null(x1) = [0 0] x1 + [1]
                  [0 0]      [1]
       true() = [0]
                [0]
       false() = [0]
                 [0]
       mem(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [1]
       =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                   [0 0]      [0 0]      [0]
       max(x1) = [0 1] x1 + [1]
                 [0 0]      [1]
       not(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
       max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [1]
       u() = [0]
             [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  f(x, nil()) -> g(nil(), x)
         , f(x, g(y, z)) -> g(f(x, y), z)
         , ++(x, nil()) -> x
         , ++(x, g(y, z)) -> g(++(x, y), z)
         , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
         , mem(x, max(x)) -> not(null(x))}
      Weak Trs:
        {  null(nil()) -> true()
         , null(g(x, y)) -> false()
         , mem(nil(), y) -> false()
         , max(g(g(nil(), x), y)) -> max'(x, y)
         , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {++(x, nil()) -> x}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
          Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
          Uargs(not) = {1}, Uargs(max') = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         f(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 1]      [0 0]      [1]
         nil() = [0]
                 [0]
         g(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
         ++(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 0]      [1]
         null(x1) = [0 0] x1 + [0]
                    [0 0]      [1]
         true() = [0]
                  [0]
         false() = [0]
                   [0]
         mem(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [1]
         =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
         max(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         not(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
         max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [1]
         u() = [0]
               [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  f(x, nil()) -> g(nil(), x)
           , f(x, g(y, z)) -> g(f(x, y), z)
           , ++(x, g(y, z)) -> g(++(x, y), z)
           , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
           , mem(x, max(x)) -> not(null(x))}
        Weak Trs:
          {  ++(x, nil()) -> x
           , null(nil()) -> true()
           , null(g(x, y)) -> false()
           , mem(nil(), y) -> false()
           , max(g(g(nil(), x), y)) -> max'(x, y)
           , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {mem(x, max(x)) -> not(null(x))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
            Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
            Uargs(not) = {1}, Uargs(max') = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           f(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 0]      [1]
           nil() = [1]
                   [0]
           g(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                       [0 0]      [0 0]      [1]
           ++(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                        [0 1]      [0 0]      [1]
           null(x1) = [0 0] x1 + [0]
                      [0 0]      [1]
           true() = [0]
                    [0]
           false() = [0]
                     [0]
           mem(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [1]
           =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
           max(x1) = [1 0] x1 + [2]
                     [0 1]      [0]
           not(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
           max'(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           u() = [0]
                 [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  f(x, nil()) -> g(nil(), x)
             , f(x, g(y, z)) -> g(f(x, y), z)
             , ++(x, g(y, z)) -> g(++(x, y), z)
             , mem(g(x, y), z) -> or(=(y, z), mem(x, z))}
          Weak Trs:
            {  mem(x, max(x)) -> not(null(x))
             , ++(x, nil()) -> x
             , null(nil()) -> true()
             , null(g(x, y)) -> false()
             , mem(nil(), y) -> false()
             , max(g(g(nil(), x), y)) -> max'(x, y)
             , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {f(x, nil()) -> g(nil(), x)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
              Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
              Uargs(not) = {1}, Uargs(max') = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             f(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 1]      [0 0]      [1]
             nil() = [0]
                     [0]
             g(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                         [0 0]      [0 0]      [1]
             ++(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                          [0 1]      [0 0]      [1]
             null(x1) = [0 0] x1 + [0]
                        [0 0]      [1]
             true() = [0]
                      [0]
             false() = [0]
                       [0]
             mem(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [1]
             or(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                          [0 1]      [0 0]      [1]
             =(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [0 1]      [0]
             max(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
             not(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
             max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [1]
             u() = [0]
                   [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  f(x, g(y, z)) -> g(f(x, y), z)
               , ++(x, g(y, z)) -> g(++(x, y), z)
               , mem(g(x, y), z) -> or(=(y, z), mem(x, z))}
            Weak Trs:
              {  f(x, nil()) -> g(nil(), x)
               , mem(x, max(x)) -> not(null(x))
               , ++(x, nil()) -> x
               , null(nil()) -> true()
               , null(g(x, y)) -> false()
               , mem(nil(), y) -> false()
               , max(g(g(nil(), x), y)) -> max'(x, y)
               , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {mem(g(x, y), z) -> or(=(y, z), mem(x, z))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
                Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
                Uargs(not) = {1}, Uargs(max') = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [1 1]      [0 1]      [3]
               nil() = [0]
                       [0]
               g(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                           [0 1]      [1 0]      [2]
               ++(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 1]      [0 1]      [1]
               null(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
               true() = [0]
                        [0]
               false() = [0]
                         [0]
               mem(x1, x2) = [1 1] x1 + [0 1] x2 + [3]
                             [0 0]      [0 0]      [1]
               or(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                            [0 0]      [0 0]      [1]
               =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
               max(x1) = [0 1] x1 + [1]
                         [0 0]      [0]
               not(x1) = [1 0] x1 + [1]
                         [0 0]      [1]
               max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
               u() = [0]
                     [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  f(x, g(y, z)) -> g(f(x, y), z)
                 , ++(x, g(y, z)) -> g(++(x, y), z)}
              Weak Trs:
                {  mem(g(x, y), z) -> or(=(y, z), mem(x, z))
                 , f(x, nil()) -> g(nil(), x)
                 , mem(x, max(x)) -> not(null(x))
                 , ++(x, nil()) -> x
                 , null(nil()) -> true()
                 , null(g(x, y)) -> false()
                 , mem(nil(), y) -> false()
                 , max(g(g(nil(), x), y)) -> max'(x, y)
                 , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {++(x, g(y, z)) -> g(++(x, y), z)}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
                  Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
                  Uargs(not) = {1}, Uargs(max') = {1}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [1 0]      [0 1]      [1]
                 nil() = [0]
                         [0]
                 g(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                             [0 1]      [1 0]      [1]
                 ++(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                              [0 1]      [0 1]      [0]
                 null(x1) = [0 1] x1 + [3]
                            [0 1]      [3]
                 true() = [0]
                          [0]
                 false() = [0]
                           [0]
                 mem(x1, x2) = [0 1] x1 + [0 0] x2 + [3]
                               [0 0]      [0 0]      [1]
                 or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [1]
                 =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                 max(x1) = [0 1] x1 + [1]
                           [0 0]      [1]
                 not(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                 max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 u() = [0]
                       [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs: {f(x, g(y, z)) -> g(f(x, y), z)}
                Weak Trs:
                  {  ++(x, g(y, z)) -> g(++(x, y), z)
                   , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
                   , f(x, nil()) -> g(nil(), x)
                   , mem(x, max(x)) -> not(null(x))
                   , ++(x, nil()) -> x
                   , null(nil()) -> true()
                   , null(g(x, y)) -> false()
                   , mem(nil(), y) -> false()
                   , max(g(g(nil(), x), y)) -> max'(x, y)
                   , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {f(x, g(y, z)) -> g(f(x, y), z)}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(f) = {}, Uargs(g) = {1}, Uargs(++) = {}, Uargs(null) = {},
                    Uargs(mem) = {}, Uargs(or) = {2}, Uargs(=) = {}, Uargs(max) = {},
                    Uargs(not) = {1}, Uargs(max') = {1}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   f(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                               [1 0]      [0 1]      [2]
                   nil() = [0]
                           [0]
                   g(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 1]      [1 0]      [1]
                   ++(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                                [0 1]      [0 1]      [0]
                   null(x1) = [0 0] x1 + [0]
                              [0 0]      [1]
                   true() = [0]
                            [0]
                   false() = [0]
                             [0]
                   mem(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                 [0 0]      [0 0]      [1]
                   or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                   =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                   max(x1) = [1 0] x1 + [1]
                             [1 0]      [1]
                   not(x1) = [1 0] x1 + [1]
                             [0 0]      [1]
                   max'(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [1 0]      [0]
                   u() = [1]
                         [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Weak Trs:
                    {  f(x, g(y, z)) -> g(f(x, y), z)
                     , ++(x, g(y, z)) -> g(++(x, y), z)
                     , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
                     , f(x, nil()) -> g(nil(), x)
                     , mem(x, max(x)) -> not(null(x))
                     , ++(x, nil()) -> x
                     , null(nil()) -> true()
                     , null(g(x, y)) -> false()
                     , mem(nil(), y) -> false()
                     , max(g(g(nil(), x), y)) -> max'(x, y)
                     , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(O(1),O(1))
                
                Proof:
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  f(x, g(y, z)) -> g(f(x, y), z)
                       , ++(x, g(y, z)) -> g(++(x, y), z)
                       , mem(g(x, y), z) -> or(=(y, z), mem(x, z))
                       , f(x, nil()) -> g(nil(), x)
                       , mem(x, max(x)) -> not(null(x))
                       , ++(x, nil()) -> x
                       , null(nil()) -> true()
                       , null(g(x, y)) -> false()
                       , mem(nil(), y) -> false()
                       , max(g(g(nil(), x), y)) -> max'(x, y)
                       , max(g(g(g(x, y), z), u())) -> max'(max(g(g(x, y), z)), u())}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))