We consider the following Problem:
Strict Trs:
{ and(x, or(y, z)) -> or(and(x, y), and(x, z))
, and(x, and(y, y)) -> and(x, y)
, or(or(x, y), and(y, z)) -> or(x, y)
, or(x, and(x, y)) -> x
, or(true(), y) -> true()
, or(x, false()) -> x
, or(x, x) -> x
, or(x, or(y, y)) -> or(x, y)
, and(x, true()) -> x
, and(false(), y) -> false()
, and(x, x) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
Arguments of following rules are not normal-forms:
{ and(x, and(y, y)) -> and(x, y)
, or(x, or(y, y)) -> or(x, y)}
All above mentioned rules can be savely removed.
We consider the following Problem:
Strict Trs:
{ and(x, or(y, z)) -> or(and(x, y), and(x, z))
, or(or(x, y), and(y, z)) -> or(x, y)
, or(x, and(x, y)) -> x
, or(true(), y) -> true()
, or(x, false()) -> x
, or(x, x) -> x
, and(x, true()) -> x
, and(false(), y) -> false()
, and(x, x) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ and(x, or(y, z)) -> or(and(x, y), and(x, z))
, or(or(x, y), and(y, z)) -> or(x, y)
, or(x, and(x, y)) -> x
, or(true(), y) -> true()
, or(x, false()) -> x
, or(x, x) -> x
, and(x, true()) -> x
, and(false(), y) -> false()
, and(x, x) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The following argument positions are usable:
Uargs(and) = {}, Uargs(or) = {1, 2}
We have the following restricted polynomial interpretation:
Interpretation Functions:
[and](x1, x2) = 3 + 2*x1 + 3*x1*x2 + 3*x2^2
[or](x1, x2) = 2 + x1 + 3*x2
[true]() = 0
[false]() = 0
Hurray, we answered YES(?,O(n^2))