We consider the following Problem: Strict Trs: { not(x) -> xor(x, true()) , or(x, y) -> xor(and(x, y), xor(x, y)) , implies(x, y) -> xor(and(x, y), xor(x, true())) , and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { not(x) -> xor(x, true()) , or(x, y) -> xor(and(x, y), xor(x, y)) , implies(x, y) -> xor(and(x, y), xor(x, true())) , and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { not(x) -> xor(x, true()) , or(x, y) -> xor(and(x, y), xor(x, y)) , implies(x, y) -> xor(and(x, y), xor(x, true())) , and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { not^#(x) -> xor^#(x, true()) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , and^#(x, true()) -> c_4() , and^#(x, false()) -> c_5() , and^#(x, x) -> c_6() , xor^#(x, false()) -> c_7() , xor^#(x, x) -> c_8() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} We consider the following Problem: Strict DPs: { not^#(x) -> xor^#(x, true()) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , and^#(x, true()) -> c_4() , and^#(x, false()) -> c_5() , and^#(x, x) -> c_6() , xor^#(x, false()) -> c_7() , xor^#(x, x) -> c_8() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Strict Trs: { not(x) -> xor(x, true()) , or(x, y) -> xor(and(x, y), xor(x, y)) , implies(x, y) -> xor(and(x, y), xor(x, true())) , and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} We consider the following Problem: Strict DPs: { not^#(x) -> xor^#(x, true()) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , and^#(x, true()) -> c_4() , and^#(x, false()) -> c_5() , and^#(x, x) -> c_6() , xor^#(x, false()) -> c_7() , xor^#(x, x) -> c_8() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Strict Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: Dependency Pairs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} TRS Component: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(not) = {}, Uargs(xor) = {1, 2}, Uargs(or) = {}, Uargs(and) = {}, Uargs(implies) = {}, Uargs(not^#) = {}, Uargs(xor^#) = {1, 2}, Uargs(or^#) = {}, Uargs(implies^#) = {}, Uargs(and^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: not(x1) = [0 0] x1 + [0] [0 0] [0] xor(x1, x2) = [1 0] x1 + [2 0] x2 + [2] [0 2] [0 2] [3] true() = [0] [0] or(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] and(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 1] [0 0] [0] implies(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] false() = [0] [0] not^#(x1) = [2 0] x1 + [0] [0 0] [0] xor^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] or^#(x1, x2) = [2 2] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] implies^#(x1, x2) = [2 2] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] and^#(x1, x2) = [2 1] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] c_4() = [0] [0] c_5() = [0] [0] c_6() = [0] [0] c_7() = [0] [0] c_8() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict DPs: { not^#(x) -> xor^#(x, true()) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , and^#(x, true()) -> c_4() , and^#(x, false()) -> c_5() , and^#(x, x) -> c_6() , xor^#(x, false()) -> c_7() , xor^#(x, x) -> c_8()} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->8:{1} [ YES(O(1),O(1)) ] | `->9:{8} [ YES(O(1),O(1)) ] ->6:{2} [ YES(O(1),O(1)) ] | |->7:{7} [ YES(O(1),O(1)) ] | `->9:{8} [ YES(O(1),O(1)) ] ->5:{3} [ YES(O(1),O(1)) ] | |->7:{7} [ YES(O(1),O(1)) ] | `->9:{8} [ YES(O(1),O(1)) ] ->4:{4} [ YES(O(1),O(1)) ] ->3:{5} [ YES(O(1),O(1)) ] ->2:{6} [ YES(O(1),O(1)) ] ->1:{9} [ subsumed ] | |->7:{7} [ YES(O(1),O(1)) ] | `->9:{8} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: not^#(x) -> xor^#(x, true()) , 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 3: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , 4: and^#(x, true()) -> c_4() , 5: and^#(x, false()) -> c_5() , 6: and^#(x, x) -> c_6() , 7: xor^#(x, false()) -> c_7() , 8: xor^#(x, x) -> c_8()} WeakDPs DPs: {9: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} * Path 8:{1}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {not^#(x) -> xor^#(x, true())} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: not^#(x) -> xor^#(x, true()) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: not^#(x) -> xor^#(x, true())} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: not^#(x) -> xor^#(x, true())} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{1}->9:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_8()} Weak DPs: {not^#(x) -> xor^#(x, true())} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_8() 2: not^#(x) -> xor^#(x, true()) -->_1 xor^#(x, x) -> c_8() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_8()} WeakDPs DPs: {2: not^#(x) -> xor^#(x, true())} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: not^#(x) -> xor^#(x, true()) , 1: xor^#(x, x) -> c_8()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{2}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{2}->7:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, false()) -> c_7()} Weak DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, false()) -> c_7() 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) -->_1 xor^#(x, false()) -> c_7() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, false()) -> c_7()} WeakDPs DPs: {2: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 1: xor^#(x, false()) -> c_7()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{2}->9:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_8()} Weak DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_8() 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) -->_1 xor^#(x, x) -> c_8() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_8()} WeakDPs DPs: {2: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 1: xor^#(x, x) -> c_8()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{3}->7:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, false()) -> c_7()} Weak DPs: {implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, false()) -> c_7() 2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) -->_1 xor^#(x, false()) -> c_7() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, false()) -> c_7()} WeakDPs DPs: {2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , 1: xor^#(x, false()) -> c_7()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{3}->9:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_8()} Weak DPs: {implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_8() 2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) -->_1 xor^#(x, x) -> c_8() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_8()} WeakDPs DPs: {2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: implies^#(x, y) -> xor^#(and(x, y), xor(x, true())) , 1: xor^#(x, x) -> c_8()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{4}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, true()) -> c_4()} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, true()) -> c_4() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, true()) -> c_4()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, true()) -> c_4()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{5}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, false()) -> c_5()} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, false()) -> c_5() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, false()) -> c_5()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, false()) -> c_5()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{6}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, x) -> c_6()} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, x) -> c_6() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, x) -> c_6()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{9}: subsumed -------------------- This path is subsumed by the proof of paths 1:{9}->9:{8}, 1:{9}->7:{7}. * Path 1:{9}->7:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, false()) -> c_7()} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, false()) -> c_7() 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) -->_1 xor^#(x, false()) -> c_7() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, false()) -> c_7()} WeakDPs DPs: {2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , 1: xor^#(x, false()) -> c_7()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{9}->9:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_8()} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_8() 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) -->_1 xor^#(x, x) -> c_8() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_8()} WeakDPs DPs: {2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , 1: xor^#(x, x) -> c_8()} We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { and(x, true()) -> x , and(x, false()) -> false() , and(x, x) -> x , xor(x, false()) -> x , xor(x, x) -> false() , and(xor(x, y), z) -> xor(and(x, z), and(y, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))