(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(x) → xor(x, true)
or(x, y) → xor(and(x, y), xor(x, y))
implies(x, y) → xor(and(x, y), xor(x, true))
and(x, true) → x
and(x, false) → false
and(x, x) → x
xor(x, false) → x
xor(x, x) → false
and(xor(x, y), z) → xor(and(x, z), and(y, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(z0) → xor(z0, true)
or(z0, z1) → xor(and(z0, z1), xor(z0, z1))
implies(z0, z1) → xor(and(z0, z1), xor(z0, true))
and(z0, true) → z0
and(z0, false) → false
and(z0, z0) → z0
and(xor(z0, z1), z2) → xor(and(z0, z2), and(z1, z2))
xor(z0, false) → z0
xor(z0, z0) → false
Tuples:
NOT(z0) → c(XOR(z0, true))
OR(z0, z1) → c1(XOR(and(z0, z1), xor(z0, z1)), AND(z0, z1), XOR(z0, z1))
IMPLIES(z0, z1) → c2(XOR(and(z0, z1), xor(z0, true)), AND(z0, z1), XOR(z0, true))
AND(xor(z0, z1), z2) → c6(XOR(and(z0, z2), and(z1, z2)), AND(z0, z2), AND(z1, z2))
S tuples:
NOT(z0) → c(XOR(z0, true))
OR(z0, z1) → c1(XOR(and(z0, z1), xor(z0, z1)), AND(z0, z1), XOR(z0, z1))
IMPLIES(z0, z1) → c2(XOR(and(z0, z1), xor(z0, true)), AND(z0, z1), XOR(z0, true))
AND(xor(z0, z1), z2) → c6(XOR(and(z0, z2), and(z1, z2)), AND(z0, z2), AND(z1, z2))
K tuples:none
Defined Rule Symbols:
not, or, implies, and, xor
Defined Pair Symbols:
NOT, OR, IMPLIES, AND
Compound Symbols:
c, c1, c2, c6
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
NOT(z0) → c(XOR(z0, true))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(z0) → xor(z0, true)
or(z0, z1) → xor(and(z0, z1), xor(z0, z1))
implies(z0, z1) → xor(and(z0, z1), xor(z0, true))
and(z0, true) → z0
and(z0, false) → false
and(z0, z0) → z0
and(xor(z0, z1), z2) → xor(and(z0, z2), and(z1, z2))
xor(z0, false) → z0
xor(z0, z0) → false
Tuples:
OR(z0, z1) → c1(XOR(and(z0, z1), xor(z0, z1)), AND(z0, z1), XOR(z0, z1))
IMPLIES(z0, z1) → c2(XOR(and(z0, z1), xor(z0, true)), AND(z0, z1), XOR(z0, true))
AND(xor(z0, z1), z2) → c6(XOR(and(z0, z2), and(z1, z2)), AND(z0, z2), AND(z1, z2))
S tuples:
OR(z0, z1) → c1(XOR(and(z0, z1), xor(z0, z1)), AND(z0, z1), XOR(z0, z1))
IMPLIES(z0, z1) → c2(XOR(and(z0, z1), xor(z0, true)), AND(z0, z1), XOR(z0, true))
AND(xor(z0, z1), z2) → c6(XOR(and(z0, z2), and(z1, z2)), AND(z0, z2), AND(z1, z2))
K tuples:none
Defined Rule Symbols:
not, or, implies, and, xor
Defined Pair Symbols:
OR, IMPLIES, AND
Compound Symbols:
c1, c2, c6
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(z0) → xor(z0, true)
or(z0, z1) → xor(and(z0, z1), xor(z0, z1))
implies(z0, z1) → xor(and(z0, z1), xor(z0, true))
and(z0, true) → z0
and(z0, false) → false
and(z0, z0) → z0
and(xor(z0, z1), z2) → xor(and(z0, z2), and(z1, z2))
xor(z0, false) → z0
xor(z0, z0) → false
Tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
S tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
K tuples:none
Defined Rule Symbols:
not, or, implies, and, xor
Defined Pair Symbols:
OR, IMPLIES, AND
Compound Symbols:
c1, c2, c6
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(z0) → xor(z0, true)
or(z0, z1) → xor(and(z0, z1), xor(z0, z1))
implies(z0, z1) → xor(and(z0, z1), xor(z0, true))
and(z0, true) → z0
and(z0, false) → false
and(z0, z0) → z0
and(xor(z0, z1), z2) → xor(and(z0, z2), and(z1, z2))
xor(z0, false) → z0
xor(z0, z0) → false
Tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
S tuples:
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
K tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
Defined Rule Symbols:
not, or, implies, and, xor
Defined Pair Symbols:
OR, IMPLIES, AND
Compound Symbols:
c1, c2, c6
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [4] + [2]x1
POL(IMPLIES(x1, x2)) = [4] + [5]x1
POL(OR(x1, x2)) = [5] + [4]x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(xor(x1, x2)) = [4] + [4]x1 + [4]x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
not(z0) → xor(z0, true)
or(z0, z1) → xor(and(z0, z1), xor(z0, z1))
implies(z0, z1) → xor(and(z0, z1), xor(z0, true))
and(z0, true) → z0
and(z0, false) → false
and(z0, z0) → z0
and(xor(z0, z1), z2) → xor(and(z0, z2), and(z1, z2))
xor(z0, false) → z0
xor(z0, z0) → false
Tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
S tuples:none
K tuples:
OR(z0, z1) → c1(AND(z0, z1))
IMPLIES(z0, z1) → c2(AND(z0, z1))
AND(xor(z0, z1), z2) → c6(AND(z0, z2), AND(z1, z2))
Defined Rule Symbols:
not, or, implies, and, xor
Defined Pair Symbols:
OR, IMPLIES, AND
Compound Symbols:
c1, c2, c6
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))