We consider the following Problem:
Strict Trs:
{ *(x, *(y, z)) -> *(otimes(x, y), z)
, *(1(), y) -> y
, *(+(x, y), z) -> oplus(*(x, z), *(y, z))
, *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ *(x, *(y, z)) -> *(otimes(x, y), z)
, *(1(), y) -> y
, *(+(x, y), z) -> oplus(*(x, z), *(y, z))
, *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ *(x, *(y, z)) -> *(otimes(x, y), z)
, *(1(), y) -> y
, *(+(x, y), z) -> oplus(*(x, z), *(y, z))
, *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The following argument positions are usable:
Uargs(*) = {}, Uargs(otimes) = {}, Uargs(+) = {},
Uargs(oplus) = {1, 2}
We have the following restricted polynomial interpretation:
Interpretation Functions:
[*](x1, x2) = 1 + x1 + 3*x1*x2 + 3*x2
[otimes](x1, x2) = x1
[1]() = 0
[+](x1, x2) = 3 + x1 + x2
[oplus](x1, x2) = 1 + x1 + x2
Hurray, we answered YES(?,O(n^2))