We consider the following Problem: Strict Trs: { *(x, *(y, z)) -> *(otimes(x, y), z) , *(1(), y) -> y , *(+(x, y), z) -> oplus(*(x, z), *(y, z)) , *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { *(x, *(y, z)) -> *(otimes(x, y), z) , *(1(), y) -> y , *(+(x, y), z) -> oplus(*(x, z), *(y, z)) , *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { *(x, *(y, z)) -> *(otimes(x, y), z) , *(1(), y) -> y , *(+(x, y), z) -> oplus(*(x, z), *(y, z)) , *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(*) = {}, Uargs(otimes) = {}, Uargs(+) = {}, Uargs(oplus) = {1, 2} We have the following restricted polynomial interpretation: Interpretation Functions: [*](x1, x2) = 1 + x1 + 3*x1*x2 + 3*x2 [otimes](x1, x2) = x1 [1]() = 0 [+](x1, x2) = 3 + x1 + x2 [oplus](x1, x2) = 1 + x1 + x2 Hurray, we answered YES(?,O(n^2))