(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(x, *(y, z)) → *(*(x, y), z)
*(x, x) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, *(z1, z2)) → *(*(z0, z1), z2)
*(z0, z0) → z0
Tuples:
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
S tuples:
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
K tuples:none
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
We considered the (Usable) Rules:
*(z0, *(z1, z2)) → *(*(z0, z1), z2)
*(z0, z0) → z0
And the Tuples:
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [2] + x1 + [3]x2
POL(*'(x1, x2)) = x2
POL(c(x1, x2)) = x1 + x2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, *(z1, z2)) → *(*(z0, z1), z2)
*(z0, z0) → z0
Tuples:
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
S tuples:none
K tuples:
*'(z0, *(z1, z2)) → c(*'(*(z0, z1), z2), *'(z0, z1))
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))