(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(i(x), x) → 1
*(1, y) → y
*(x, 0) → 0
*(*(x, y), z) → *(x, *(y, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
Tuples:
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
S tuples:
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
K tuples:none
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c3
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
We considered the (Usable) Rules:
*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
And the Tuples:
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [4] + [4]x1 + [4]x2
POL(*'(x1, x2)) = [4] + [4]x1
POL(0) = [4]
POL(1) = [3]
POL(c3(x1, x2)) = x1 + x2
POL(i(x1)) = [2]
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(i(z0), z0) → 1
*(1, z0) → z0
*(z0, 0) → 0
*(*(z0, z1), z2) → *(z0, *(z1, z2))
Tuples:
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
S tuples:none
K tuples:
*'(*(z0, z1), z2) → c3(*'(z0, *(z1, z2)), *'(z1, z2))
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c3
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))