We consider the following Problem:
Strict Trs:
{ +(x, 0()) -> x
, +(minus(x), x) -> 0()
, minus(0()) -> 0()
, minus(minus(x)) -> x
, minus(+(x, y)) -> +(minus(y), minus(x))
, *(x, 1()) -> x
, *(x, 0()) -> 0()
, *(x, +(y, z)) -> +(*(x, y), *(x, z))
, *(x, minus(y)) -> minus(*(x, y))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ +(x, 0()) -> x
, +(minus(x), x) -> 0()
, minus(0()) -> 0()
, minus(minus(x)) -> x
, minus(+(x, y)) -> +(minus(y), minus(x))
, *(x, 1()) -> x
, *(x, 0()) -> 0()
, *(x, +(y, z)) -> +(*(x, y), *(x, z))
, *(x, minus(y)) -> minus(*(x, y))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ +(x, 0()) -> x
, +(minus(x), x) -> 0()
, minus(0()) -> 0()
, minus(minus(x)) -> x
, minus(+(x, y)) -> +(minus(y), minus(x))
, *(x, 1()) -> x
, *(x, 0()) -> 0()
, *(x, +(y, z)) -> +(*(x, y), *(x, z))
, *(x, minus(y)) -> minus(*(x, y))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The following argument positions are usable:
Uargs(+) = {1, 2}, Uargs(minus) = {1}, Uargs(*) = {}
We have the following restricted polynomial interpretation:
Interpretation Functions:
[+](x1, x2) = 2 + x1 + x2
[0]() = 0
[minus](x1) = 1 + 2*x1
[*](x1, x2) = 1 + 2*x1 + 2*x1*x2 + 3*x2
[1]() = 1
Hurray, we answered YES(?,O(n^2))