We consider the following Problem: Strict Trs: { +(x, 0()) -> x , +(minus(x), x) -> 0() , minus(0()) -> 0() , minus(minus(x)) -> x , minus(+(x, y)) -> +(minus(y), minus(x)) , *(x, 1()) -> x , *(x, 0()) -> 0() , *(x, +(y, z)) -> +(*(x, y), *(x, z)) , *(x, minus(y)) -> minus(*(x, y))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { +(x, 0()) -> x , +(minus(x), x) -> 0() , minus(0()) -> 0() , minus(minus(x)) -> x , minus(+(x, y)) -> +(minus(y), minus(x)) , *(x, 1()) -> x , *(x, 0()) -> 0() , *(x, +(y, z)) -> +(*(x, y), *(x, z)) , *(x, minus(y)) -> minus(*(x, y))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { +(x, 0()) -> x , +(minus(x), x) -> 0() , minus(0()) -> 0() , minus(minus(x)) -> x , minus(+(x, y)) -> +(minus(y), minus(x)) , *(x, 1()) -> x , *(x, 0()) -> 0() , *(x, +(y, z)) -> +(*(x, y), *(x, z)) , *(x, minus(y)) -> minus(*(x, y))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(+) = {1, 2}, Uargs(minus) = {1}, Uargs(*) = {} We have the following restricted polynomial interpretation: Interpretation Functions: [+](x1, x2) = 2 + x1 + x2 [0]() = 0 [minus](x1) = 1 + 2*x1 [*](x1, x2) = 1 + 2*x1 + 2*x1*x2 + 3*x2 [1]() = 1 Hurray, we answered YES(?,O(n^2))