We consider the following Problem:
Strict Trs:
{ f(x, y) -> x
, g(a()) -> h(a(), b(), a())
, i(x) -> f(x, x)
, h(x, x, y) -> g(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ f(x, y) -> x
, g(a()) -> h(a(), b(), a())
, i(x) -> f(x, x)
, h(x, x, y) -> g(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {f(x, y) -> x}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [0 1] x2 + [2]
[0 1] [1 0] [0]
g(x1) = [0 0] x1 + [1]
[0 0] [1]
a() = [0]
[0]
h(x1, x2, x3) = [0 1] x1 + [1 0] x2 + [0 0] x3 + [1]
[1 0] [0 1] [0 0] [1]
b() = [0]
[0]
i(x1) = [1 1] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ g(a()) -> h(a(), b(), a())
, i(x) -> f(x, x)
, h(x, x, y) -> g(x)}
Weak Trs: {f(x, y) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {g(a()) -> h(a(), b(), a())}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
[0 1] [0 1] [0]
g(x1) = [0 2] x1 + [1]
[0 0] [1]
a() = [0]
[1]
h(x1, x2, x3) = [0 0] x1 + [0 2] x2 + [0 0] x3 + [1]
[0 0] [0 1] [0 0] [1]
b() = [0]
[0]
i(x1) = [1 2] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ i(x) -> f(x, x)
, h(x, x, y) -> g(x)}
Weak Trs:
{ g(a()) -> h(a(), b(), a())
, f(x, y) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {h(x, x, y) -> g(x)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
[0 1] [1 0] [0]
g(x1) = [1 0] x1 + [0]
[0 0] [1]
a() = [1]
[0]
h(x1, x2, x3) = [0 1] x1 + [1 0] x2 + [0 0] x3 + [1]
[0 0] [0 0] [0 0] [1]
b() = [0]
[0]
i(x1) = [1 1] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {i(x) -> f(x, x)}
Weak Trs:
{ h(x, x, y) -> g(x)
, g(a()) -> h(a(), b(), a())
, f(x, y) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {i(x) -> f(x, x)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 1] [0 0] [0]
g(x1) = [0 0] x1 + [1]
[0 0] [1]
a() = [0]
[0]
h(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [1]
[0 1] [1 0] [0 0] [1]
b() = [0]
[0]
i(x1) = [1 0] x1 + [2]
[0 1] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ i(x) -> f(x, x)
, h(x, x, y) -> g(x)
, g(a()) -> h(a(), b(), a())
, f(x, y) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ i(x) -> f(x, x)
, h(x, x, y) -> g(x)
, g(a()) -> h(a(), b(), a())
, f(x, y) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))