(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(a(x)) → b(b(x))
b(b(a(x))) → a(b(b(x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(z0)) → b(b(z0))
b(b(a(z0))) → a(b(b(z0)))
Tuples:
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
S tuples:
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
K tuples:none
Defined Rule Symbols:
a, b
Defined Pair Symbols:
A, B
Compound Symbols:
c, c1
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
We considered the (Usable) Rules:
b(b(a(z0))) → a(b(b(z0)))
a(a(z0)) → b(b(z0))
And the Tuples:
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x1
POL(B(x1)) = [2]x1
POL(a(x1)) = [1] + [5]x1
POL(b(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2, x3)) = x1 + x2 + x3
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(z0)) → b(b(z0))
b(b(a(z0))) → a(b(b(z0)))
Tuples:
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
S tuples:none
K tuples:
A(a(z0)) → c(B(b(z0)), B(z0))
B(b(a(z0))) → c1(A(b(b(z0))), B(b(z0)), B(z0))
Defined Rule Symbols:
a, b
Defined Pair Symbols:
A, B
Compound Symbols:
c, c1
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))