We consider the following Problem: Strict Trs: { if(true(), x, y) -> x , if(false(), x, y) -> y , if(x, y, y) -> y , if(if(x, y, z), u(), v()) -> if(x, if(y, u(), v()), if(z, u(), v()))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { if(true(), x, y) -> x , if(false(), x, y) -> y , if(x, y, y) -> y , if(if(x, y, z), u(), v()) -> if(x, if(y, u(), v()), if(z, u(), v()))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { if(false(), x, y) -> y , if(x, y, y) -> y} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(if) = {2, 3} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 1] [0 0] [1 1] [1] true() = [0] [0] false() = [0] [0] u() = [0] [0] v() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { if(true(), x, y) -> x , if(if(x, y, z), u(), v()) -> if(x, if(y, u(), v()), if(z, u(), v()))} Weak Trs: { if(false(), x, y) -> y , if(x, y, y) -> y} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(true(), x, y) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(if) = {2, 3} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 1] [0 1] [0 1] [0] true() = [0] [1] false() = [0] [0] u() = [0] [0] v() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {if(if(x, y, z), u(), v()) -> if(x, if(y, u(), v()), if(z, u(), v()))} Weak Trs: { if(true(), x, y) -> x , if(false(), x, y) -> y , if(x, y, y) -> y} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {if(if(x, y, z), u(), v()) -> if(x, if(y, u(), v()), if(z, u(), v()))} Weak Trs: { if(true(), x, y) -> x , if(false(), x, y) -> y , if(x, y, y) -> y} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 0. The enriched problem is compatible with the following automaton: { if_0(2, 2, 2) -> 1 , true_0() -> 1 , true_0() -> 2 , false_0() -> 1 , false_0() -> 2 , u_0() -> 1 , u_0() -> 2 , v_0() -> 1 , v_0() -> 2} Hurray, we answered YES(?,O(n^1))