We consider the following Problem:
Strict Trs:
{ if(true(), x, y) -> x
, if(false(), x, y) -> y
, if(x, y, y) -> y
, if(if(x, y, z), u(), v()) ->
if(x, if(y, u(), v()), if(z, u(), v()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ if(true(), x, y) -> x
, if(false(), x, y) -> y
, if(x, y, y) -> y
, if(if(x, y, z), u(), v()) ->
if(x, if(y, u(), v()), if(z, u(), v()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ if(false(), x, y) -> y
, if(x, y, y) -> y}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(if) = {2, 3}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
[0 1] [0 0] [1 1] [1]
true() = [0]
[0]
false() = [0]
[0]
u() = [0]
[0]
v() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ if(true(), x, y) -> x
, if(if(x, y, z), u(), v()) ->
if(x, if(y, u(), v()), if(z, u(), v()))}
Weak Trs:
{ if(false(), x, y) -> y
, if(x, y, y) -> y}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {if(true(), x, y) -> x}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(if) = {2, 3}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
[0 1] [0 1] [0 1] [0]
true() = [0]
[1]
false() = [0]
[0]
u() = [0]
[0]
v() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{if(if(x, y, z), u(), v()) ->
if(x, if(y, u(), v()), if(z, u(), v()))}
Weak Trs:
{ if(true(), x, y) -> x
, if(false(), x, y) -> y
, if(x, y, y) -> y}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{if(if(x, y, z), u(), v()) ->
if(x, if(y, u(), v()), if(z, u(), v()))}
Weak Trs:
{ if(true(), x, y) -> x
, if(false(), x, y) -> y
, if(x, y, y) -> y}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 0.
The enriched problem is compatible with the following automaton:
{ if_0(2, 2, 2) -> 1
, true_0() -> 1
, true_0() -> 2
, false_0() -> 1
, false_0() -> 2
, u_0() -> 1
, u_0() -> 2
, v_0() -> 1
, v_0() -> 2}
Hurray, we answered YES(?,O(n^1))