(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

or(x, x) → x
and(x, x) → x
not(not(x)) → x
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

or(z0, z0) → z0
and(z0, z0) → z0
not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
Tuples:

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
S tuples:

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
K tuples:none
Defined Rule Symbols:

or, and, not

Defined Pair Symbols:

NOT

Compound Symbols:

c3, c4

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
We considered the (Usable) Rules:

not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
and(z0, z0) → z0
or(z0, z0) → z0
And the Tuples:

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(AND(x1, x2)) = 0   
POL(NOT(x1)) = [2]x1   
POL(OR(x1, x2)) = [1] + x2   
POL(and(x1, x2)) = [4] + [3]x1 + [5]x2   
POL(c3(x1, x2, x3)) = x1 + x2 + x3   
POL(c4(x1, x2, x3)) = x1 + x2 + x3   
POL(not(x1)) = x1   
POL(or(x1, x2)) = [4] + [3]x1 + [5]x2   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

or(z0, z0) → z0
and(z0, z0) → z0
not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
Tuples:

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
S tuples:none
K tuples:

NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
Defined Rule Symbols:

or, and, not

Defined Pair Symbols:

NOT

Compound Symbols:

c3, c4

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))