(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
or(x, x) → x
and(x, x) → x
not(not(x)) → x
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
or(z0, z0) → z0
and(z0, z0) → z0
not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
Tuples:
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
S tuples:
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
K tuples:none
Defined Rule Symbols:
or, and, not
Defined Pair Symbols:
NOT
Compound Symbols:
c3, c4
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
We considered the (Usable) Rules:
not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
and(z0, z0) → z0
or(z0, z0) → z0
And the Tuples:
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = 0
POL(NOT(x1)) = [2]x1
POL(OR(x1, x2)) = [1] + x2
POL(and(x1, x2)) = [4] + [3]x1 + [5]x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(not(x1)) = x1
POL(or(x1, x2)) = [4] + [3]x1 + [5]x2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
or(z0, z0) → z0
and(z0, z0) → z0
not(not(z0)) → z0
not(and(z0, z1)) → or(not(z0), not(z1))
not(or(z0, z1)) → and(not(z0), not(z1))
Tuples:
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
S tuples:none
K tuples:
NOT(and(z0, z1)) → c3(OR(not(z0), not(z1)), NOT(z0), NOT(z1))
NOT(or(z0, z1)) → c4(AND(not(z0), not(z1)), NOT(z0), NOT(z1))
Defined Rule Symbols:
or, and, not
Defined Pair Symbols:
NOT
Compound Symbols:
c3, c4
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))