We consider the following Problem:

  Strict Trs:
    {  not(x) -> if(x, false(), true())
     , and(x, y) -> if(x, y, false())
     , or(x, y) -> if(x, true(), y)
     , implies(x, y) -> if(x, y, true())
     , =(x, x) -> true()
     , =(x, y) -> if(x, y, not(y))
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , if(x, x, if(x, false(), true())) -> true()
     , =(x, y) -> if(x, y, if(y, false(), true()))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  not(x) -> if(x, false(), true())
       , and(x, y) -> if(x, y, false())
       , or(x, y) -> if(x, true(), y)
       , implies(x, y) -> if(x, y, true())
       , =(x, x) -> true()
       , =(x, y) -> if(x, y, not(y))
       , if(true(), x, y) -> x
       , if(false(), x, y) -> y
       , if(x, x, if(x, false(), true())) -> true()
       , =(x, y) -> if(x, y, if(y, false(), true()))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  and(x, y) -> if(x, y, false())
       , if(x, x, if(x, false(), true())) -> true()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
        Uargs(implies) = {}, Uargs(=) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       not(x1) = [0 0] x1 + [0]
                 [0 0]      [0]
       if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                        [0 0]      [0 0]      [0 0]      [1]
       false() = [0]
                 [0]
       true() = [0]
                [0]
       and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                     [0 0]      [0 0]      [2]
       or(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                    [0 0]      [0 0]      [0]
       implies(x1, x2) = [0 0] x1 + [1 2] x2 + [0]
                         [0 0]      [0 0]      [0]
       =(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                   [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  not(x) -> if(x, false(), true())
         , or(x, y) -> if(x, true(), y)
         , implies(x, y) -> if(x, y, true())
         , =(x, x) -> true()
         , =(x, y) -> if(x, y, not(y))
         , if(true(), x, y) -> x
         , if(false(), x, y) -> y
         , =(x, y) -> if(x, y, if(y, false(), true()))}
      Weak Trs:
        {  and(x, y) -> if(x, y, false())
         , if(x, x, if(x, false(), true())) -> true()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {or(x, y) -> if(x, true(), y)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
          Uargs(implies) = {}, Uargs(=) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         not(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
         if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                          [0 0]      [0 0]      [0 0]      [1]
         false() = [0]
                   [0]
         true() = [0]
                  [0]
         and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                       [0 0]      [0 0]      [2]
         or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                      [0 0]      [0 0]      [2]
         implies(x1, x2) = [0 0] x1 + [1 2] x2 + [0]
                           [0 0]      [0 0]      [0]
         =(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                     [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  not(x) -> if(x, false(), true())
           , implies(x, y) -> if(x, y, true())
           , =(x, x) -> true()
           , =(x, y) -> if(x, y, not(y))
           , if(true(), x, y) -> x
           , if(false(), x, y) -> y
           , =(x, y) -> if(x, y, if(y, false(), true()))}
        Weak Trs:
          {  or(x, y) -> if(x, true(), y)
           , and(x, y) -> if(x, y, false())
           , if(x, x, if(x, false(), true())) -> true()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {implies(x, y) -> if(x, y, true())}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
            Uargs(implies) = {}, Uargs(=) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           not(x1) = [0 0] x1 + [0]
                     [0 0]      [0]
           if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                            [0 0]      [0 0]      [0 0]      [1]
           false() = [0]
                     [0]
           true() = [0]
                    [0]
           and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                         [0 0]      [0 0]      [2]
           or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                        [0 0]      [0 0]      [2]
           implies(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                             [0 0]      [0 0]      [2]
           =(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                       [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  not(x) -> if(x, false(), true())
             , =(x, x) -> true()
             , =(x, y) -> if(x, y, not(y))
             , if(true(), x, y) -> x
             , if(false(), x, y) -> y
             , =(x, y) -> if(x, y, if(y, false(), true()))}
          Weak Trs:
            {  implies(x, y) -> if(x, y, true())
             , or(x, y) -> if(x, true(), y)
             , and(x, y) -> if(x, y, false())
             , if(x, x, if(x, false(), true())) -> true()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {=(x, x) -> true()}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
              Uargs(implies) = {}, Uargs(=) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             not(x1) = [0 0] x1 + [0]
                       [0 0]      [0]
             if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                              [0 0]      [0 0]      [0 0]      [1]
             false() = [0]
                       [0]
             true() = [0]
                      [0]
             and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                           [0 0]      [0 0]      [2]
             or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                          [0 0]      [0 0]      [2]
             implies(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [2]
             =(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                         [0 0]      [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  not(x) -> if(x, false(), true())
               , =(x, y) -> if(x, y, not(y))
               , if(true(), x, y) -> x
               , if(false(), x, y) -> y
               , =(x, y) -> if(x, y, if(y, false(), true()))}
            Weak Trs:
              {  =(x, x) -> true()
               , implies(x, y) -> if(x, y, true())
               , or(x, y) -> if(x, true(), y)
               , and(x, y) -> if(x, y, false())
               , if(x, x, if(x, false(), true())) -> true()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {=(x, y) -> if(x, y, not(y))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
                Uargs(implies) = {}, Uargs(=) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               not(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
               if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                                [0 0]      [0 0]      [0 0]      [1]
               false() = [0]
                         [0]
               true() = [0]
                        [0]
               and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                             [0 0]      [0 0]      [2]
               or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                            [0 0]      [0 0]      [2]
               implies(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                                 [0 0]      [0 0]      [2]
               =(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                           [0 0]      [0 0]      [2]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  not(x) -> if(x, false(), true())
                 , if(true(), x, y) -> x
                 , if(false(), x, y) -> y
                 , =(x, y) -> if(x, y, if(y, false(), true()))}
              Weak Trs:
                {  =(x, y) -> if(x, y, not(y))
                 , =(x, x) -> true()
                 , implies(x, y) -> if(x, y, true())
                 , or(x, y) -> if(x, true(), y)
                 , and(x, y) -> if(x, y, false())
                 , if(x, x, if(x, false(), true())) -> true()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component:
                {  not(x) -> if(x, false(), true())
                 , =(x, y) -> if(x, y, if(y, false(), true()))}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
                  Uargs(implies) = {}, Uargs(=) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 not(x1) = [0 0] x1 + [2]
                           [0 0]      [0]
                 if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                                  [0 0]      [0 0]      [0 0]      [0]
                 false() = [0]
                           [0]
                 true() = [0]
                          [0]
                 and(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [0]
                 or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                              [0 0]      [0 0]      [0]
                 implies(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                                   [0 0]      [0 0]      [0]
                 =(x1, x2) = [0 0] x1 + [1 1] x2 + [3]
                             [0 0]      [0 0]      [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  if(true(), x, y) -> x
                   , if(false(), x, y) -> y}
                Weak Trs:
                  {  not(x) -> if(x, false(), true())
                   , =(x, y) -> if(x, y, if(y, false(), true()))
                   , =(x, y) -> if(x, y, not(y))
                   , =(x, x) -> true()
                   , implies(x, y) -> if(x, y, true())
                   , or(x, y) -> if(x, true(), y)
                   , and(x, y) -> if(x, y, false())
                   , if(x, x, if(x, false(), true())) -> true()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {if(false(), x, y) -> y}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
                    Uargs(implies) = {}, Uargs(=) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   not(x1) = [0 0] x1 + [2]
                             [0 0]      [2]
                   if(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                                    [0 0]      [0 0]      [0 1]      [1]
                   false() = [0]
                             [0]
                   true() = [0]
                            [0]
                   and(x1, x2) = [0 0] x1 + [1 1] x2 + [2]
                                 [0 0]      [0 0]      [1]
                   or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                [0 0]      [0 1]      [2]
                   implies(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                                     [0 0]      [0 0]      [2]
                   =(x1, x2) = [0 0] x1 + [1 1] x2 + [3]
                               [0 0]      [0 0]      [3]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs: {if(true(), x, y) -> x}
                  Weak Trs:
                    {  if(false(), x, y) -> y
                     , not(x) -> if(x, false(), true())
                     , =(x, y) -> if(x, y, if(y, false(), true()))
                     , =(x, y) -> if(x, y, not(y))
                     , =(x, x) -> true()
                     , implies(x, y) -> if(x, y, true())
                     , or(x, y) -> if(x, true(), y)
                     , and(x, y) -> if(x, y, false())
                     , if(x, x, if(x, false(), true())) -> true()}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {if(true(), x, y) -> x}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(not) = {}, Uargs(if) = {3}, Uargs(and) = {}, Uargs(or) = {},
                      Uargs(implies) = {}, Uargs(=) = {}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     not(x1) = [0 0] x1 + [2]
                               [0 0]      [2]
                     if(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                                      [0 0]      [1 1]      [0 1]      [1]
                     false() = [0]
                               [0]
                     true() = [0]
                              [0]
                     and(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                   [0 0]      [1 1]      [2]
                     or(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                  [0 0]      [0 1]      [2]
                     implies(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                                       [0 0]      [1 1]      [2]
                     =(x1, x2) = [0 0] x1 + [1 0] x2 + [3]
                                 [0 0]      [1 1]      [3]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Weak Trs:
                      {  if(true(), x, y) -> x
                       , if(false(), x, y) -> y
                       , not(x) -> if(x, false(), true())
                       , =(x, y) -> if(x, y, if(y, false(), true()))
                       , =(x, y) -> if(x, y, not(y))
                       , =(x, x) -> true()
                       , implies(x, y) -> if(x, y, true())
                       , or(x, y) -> if(x, true(), y)
                       , and(x, y) -> if(x, y, false())
                       , if(x, x, if(x, false(), true())) -> true()}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Weak Trs:
                        {  if(true(), x, y) -> x
                         , if(false(), x, y) -> y
                         , not(x) -> if(x, false(), true())
                         , =(x, y) -> if(x, y, if(y, false(), true()))
                         , =(x, y) -> if(x, y, not(y))
                         , =(x, x) -> true()
                         , implies(x, y) -> if(x, y, true())
                         , or(x, y) -> if(x, true(), y)
                         , and(x, y) -> if(x, y, false())
                         , if(x, x, if(x, false(), true())) -> true()}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))