We consider the following Problem:

  Strict Trs:
    {  not(x) -> xor(x, true())
     , implies(x, y) -> xor(and(x, y), xor(x, true()))
     , or(x, y) -> xor(and(x, y), xor(x, y))
     , =(x, y) -> xor(x, xor(y, true()))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  not(x) -> xor(x, true())
       , implies(x, y) -> xor(and(x, y), xor(x, true()))
       , or(x, y) -> xor(and(x, y), xor(x, y))
       , =(x, y) -> xor(x, xor(y, true()))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {not(x) -> xor(x, true())}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(not) = {}, Uargs(xor) = {}, Uargs(implies) = {},
        Uargs(and) = {}, Uargs(or) = {}, Uargs(=) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       not(x1) = [0 0] x1 + [2]
                 [0 0]      [2]
       xor(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       true() = [0]
                [0]
       implies(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
       and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       or(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                    [0 0]      [0 0]      [0]
       =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                   [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  implies(x, y) -> xor(and(x, y), xor(x, true()))
         , or(x, y) -> xor(and(x, y), xor(x, y))
         , =(x, y) -> xor(x, xor(y, true()))}
      Weak Trs: {not(x) -> xor(x, true())}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {implies(x, y) -> xor(and(x, y), xor(x, true()))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(not) = {}, Uargs(xor) = {}, Uargs(implies) = {},
          Uargs(and) = {}, Uargs(or) = {}, Uargs(=) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         not(x1) = [0 0] x1 + [2]
                   [0 0]      [2]
         xor(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         true() = [0]
                  [0]
         implies(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                           [0 0]      [0 0]      [2]
         and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
         or(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [0]
         =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  or(x, y) -> xor(and(x, y), xor(x, y))
           , =(x, y) -> xor(x, xor(y, true()))}
        Weak Trs:
          {  implies(x, y) -> xor(and(x, y), xor(x, true()))
           , not(x) -> xor(x, true())}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {or(x, y) -> xor(and(x, y), xor(x, y))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(not) = {}, Uargs(xor) = {}, Uargs(implies) = {},
            Uargs(and) = {}, Uargs(or) = {}, Uargs(=) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           not(x1) = [0 0] x1 + [2]
                     [0 0]      [2]
           xor(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           true() = [0]
                    [0]
           implies(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                             [0 0]      [0 0]      [2]
           and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
           or(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                        [0 0]      [0 0]      [2]
           =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs: {=(x, y) -> xor(x, xor(y, true()))}
          Weak Trs:
            {  or(x, y) -> xor(and(x, y), xor(x, y))
             , implies(x, y) -> xor(and(x, y), xor(x, true()))
             , not(x) -> xor(x, true())}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {=(x, y) -> xor(x, xor(y, true()))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(not) = {}, Uargs(xor) = {}, Uargs(implies) = {},
              Uargs(and) = {}, Uargs(or) = {}, Uargs(=) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             not(x1) = [0 0] x1 + [2]
                       [0 0]      [2]
             xor(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             true() = [0]
                      [0]
             implies(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
             and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             or(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                          [0 0]      [0 0]      [2]
             =(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                         [0 0]      [0 0]      [2]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Weak Trs:
              {  =(x, y) -> xor(x, xor(y, true()))
               , or(x, y) -> xor(and(x, y), xor(x, y))
               , implies(x, y) -> xor(and(x, y), xor(x, true()))
               , not(x) -> xor(x, true())}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(O(1),O(1))
          
          Proof:
            We consider the following Problem:
            
              Weak Trs:
                {  =(x, y) -> xor(x, xor(y, true()))
                 , or(x, y) -> xor(and(x, y), xor(x, y))
                 , implies(x, y) -> xor(and(x, y), xor(x, true()))
                 , not(x) -> xor(x, true())}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(O(1),O(1))
            
            Proof:
              Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))