We consider the following Problem: Strict Trs: { prime(0()) -> false() , prime(s(0())) -> false() , prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true() , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { prime(0()) -> false() , prime(s(0())) -> false() , prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true() , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {}, Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {}, Uargs(=) = {}, Uargs(rem) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: prime(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] prime1(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] true() = [0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] not(x1) = [1 0] x1 + [0] [0 0] [0] divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] =(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0())} Weak Trs: { prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {prime(s(s(x))) -> prime1(s(s(x)), s(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {}, Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {}, Uargs(=) = {}, Uargs(rem) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: prime(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] prime1(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] not(x1) = [1 0] x1 + [0] [0 0] [0] divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] =(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0())} Weak Trs: { prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {divp(x, y) -> =(rem(x, y), 0())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {}, Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {}, Uargs(=) = {}, Uargs(rem) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: prime(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] prime1(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] not(x1) = [1 0] x1 + [1] [0 0] [0] divp(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [2] =(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))} Weak Trs: { divp(x, y) -> =(rem(x, y), 0()) , prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {}, Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {}, Uargs(=) = {}, Uargs(rem) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: prime(x1) = [0 3] x1 + [1] [0 0] [1] 0() = [0] [1] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 1] [2] prime1(x1, x2) = [0 0] x1 + [0 3] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] and(x1, x2) = [1 0] x1 + [1 2] x2 + [0] [0 0] [0 0] [1] not(x1) = [1 1] x1 + [0] [0 0] [0] divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] =(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0()) , prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) , divp(x, y) -> =(rem(x, y), 0()) , prime(s(s(x))) -> prime1(s(s(x)), s(x)) , prime(0()) -> false() , prime(s(0())) -> false() , prime1(x, 0()) -> false() , prime1(x, s(0())) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))