We consider the following Problem:

  Strict Trs:
    {  prime(0()) -> false()
     , prime(s(0())) -> false()
     , prime(s(s(x))) -> prime1(s(s(x)), s(x))
     , prime1(x, 0()) -> false()
     , prime1(x, s(0())) -> true()
     , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
     , divp(x, y) -> =(rem(x, y), 0())}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  prime(0()) -> false()
       , prime(s(0())) -> false()
       , prime(s(s(x))) -> prime1(s(s(x)), s(x))
       , prime1(x, 0()) -> false()
       , prime1(x, s(0())) -> true()
       , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
       , divp(x, y) -> =(rem(x, y), 0())}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  prime(0()) -> false()
       , prime(s(0())) -> false()
       , prime1(x, 0()) -> false()
       , prime1(x, s(0())) -> true()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {},
        Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {},
        Uargs(=) = {}, Uargs(rem) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       prime(x1) = [0 0] x1 + [1]
                   [0 0]      [1]
       0() = [0]
             [0]
       false() = [0]
                 [0]
       s(x1) = [0 0] x1 + [0]
               [0 0]      [0]
       prime1(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                        [0 0]      [1 0]      [1]
       true() = [0]
                [0]
       and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                     [0 0]      [1 0]      [0]
       not(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
       divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [0]
       =(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                   [0 0]      [0 0]      [1]
       rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  prime(s(s(x))) -> prime1(s(s(x)), s(x))
         , prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
         , divp(x, y) -> =(rem(x, y), 0())}
      Weak Trs:
        {  prime(0()) -> false()
         , prime(s(0())) -> false()
         , prime1(x, 0()) -> false()
         , prime1(x, s(0())) -> true()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {prime(s(s(x))) -> prime1(s(s(x)), s(x))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {},
          Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {},
          Uargs(=) = {}, Uargs(rem) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         prime(x1) = [0 0] x1 + [1]
                     [0 0]      [1]
         0() = [0]
               [0]
         false() = [0]
                   [0]
         s(x1) = [0 0] x1 + [0]
                 [0 0]      [0]
         prime1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [1]
         true() = [0]
                  [0]
         and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 0]      [0]
         not(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
         divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [0]
         =(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                     [0 0]      [0 0]      [1]
         rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  prime1(x, s(s(y))) ->
             and(not(divp(s(s(y)), x)), prime1(x, s(y)))
           , divp(x, y) -> =(rem(x, y), 0())}
        Weak Trs:
          {  prime(s(s(x))) -> prime1(s(s(x)), s(x))
           , prime(0()) -> false()
           , prime(s(0())) -> false()
           , prime1(x, 0()) -> false()
           , prime1(x, s(0())) -> true()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {divp(x, y) -> =(rem(x, y), 0())}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {},
            Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {},
            Uargs(=) = {}, Uargs(rem) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           prime(x1) = [0 0] x1 + [1]
                       [0 0]      [1]
           0() = [0]
                 [0]
           false() = [0]
                     [0]
           s(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
           prime1(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
           true() = [0]
                    [0]
           and(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                         [0 0]      [0 0]      [1]
           not(x1) = [1 0] x1 + [1]
                     [0 0]      [0]
           divp(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [2]
           =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [1]
           rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))}
          Weak Trs:
            {  divp(x, y) -> =(rem(x, y), 0())
             , prime(s(s(x))) -> prime1(s(s(x)), s(x))
             , prime(0()) -> false()
             , prime(s(0())) -> false()
             , prime1(x, 0()) -> false()
             , prime1(x, s(0())) -> true()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(prime) = {}, Uargs(s) = {}, Uargs(prime1) = {},
              Uargs(and) = {1, 2}, Uargs(not) = {1}, Uargs(divp) = {},
              Uargs(=) = {}, Uargs(rem) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             prime(x1) = [0 3] x1 + [1]
                         [0 0]      [1]
             0() = [0]
                   [1]
             false() = [0]
                       [0]
             s(x1) = [0 0] x1 + [0]
                     [0 1]      [2]
             prime1(x1, x2) = [0 0] x1 + [0 3] x2 + [0]
                              [0 0]      [0 0]      [1]
             true() = [0]
                      [0]
             and(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                           [0 0]      [0 0]      [1]
             not(x1) = [1 1] x1 + [0]
                       [0 0]      [0]
             divp(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [1]
             =(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [1]
             rem(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Weak Trs:
              {  prime1(x, s(s(y))) ->
                 and(not(divp(s(s(y)), x)), prime1(x, s(y)))
               , divp(x, y) -> =(rem(x, y), 0())
               , prime(s(s(x))) -> prime1(s(s(x)), s(x))
               , prime(0()) -> false()
               , prime(s(0())) -> false()
               , prime1(x, 0()) -> false()
               , prime1(x, s(0())) -> true()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(O(1),O(1))
          
          Proof:
            We consider the following Problem:
            
              Weak Trs:
                {  prime1(x, s(s(y))) ->
                   and(not(divp(s(s(y)), x)), prime1(x, s(y)))
                 , divp(x, y) -> =(rem(x, y), 0())
                 , prime(s(s(x))) -> prime1(s(s(x)), s(x))
                 , prime(0()) -> false()
                 , prime(s(0())) -> false()
                 , prime1(x, 0()) -> false()
                 , prime1(x, s(0())) -> true()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(O(1),O(1))
            
            Proof:
              Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))