(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(X)) → f(a(b(f(X))))
f(a(g(X))) → b(X)
b(X) → a(X)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(a(b(f(z0))))
f(a(g(z0))) → b(z0)
b(z0) → a(z0)
Tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
F(a(g(z0))) → c1(B(z0))
S tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
F(a(g(z0))) → c1(B(z0))
K tuples:none
Defined Rule Symbols:

f, b

Defined Pair Symbols:

F

Compound Symbols:

c, c1

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(a(g(z0))) → c1(B(z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(a(b(f(z0))))
f(a(g(z0))) → b(z0)
b(z0) → a(z0)
Tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
S tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
K tuples:none
Defined Rule Symbols:

f, b

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
We considered the (Usable) Rules:

b(z0) → a(z0)
And the Tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(B(x1)) = [5] + x1   
POL(F(x1)) = [2] + [4]x1   
POL(a(x1)) = 0   
POL(b(x1)) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(f(x1)) = [4] + [4]x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → f(a(b(f(z0))))
f(a(g(z0))) → b(z0)
b(z0) → a(z0)
Tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
S tuples:none
K tuples:

F(f(z0)) → c(F(a(b(f(z0)))), B(f(z0)), F(z0))
Defined Rule Symbols:

f, b

Defined Pair Symbols:

F

Compound Symbols:

c

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))