We consider the following Problem: Strict Trs: {f(s(X), Y) -> h(s(f(h(Y), X)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {f(s(X), Y) -> h(s(f(h(Y), X)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(s(X), Y) -> h(s(f(h(Y), X)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(s) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2) = [0 0] x1 + [0 0] x2 + [2] [1 1] [0 0] [2] s(x1) = [0 0] x1 + [3] [1 0] [3] h(x1) = [0 0] x1 + [1] [1 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: {f(s(X), Y) -> h(s(f(h(Y), X)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: {f(s(X), Y) -> h(s(f(h(Y), X)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))