(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
div(X, e) → i(X)
i(div(X, Y)) → div(Y, X)
div(div(X, Y), Z) → div(Y, div(i(X), Z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
div(z0, e) → i(z0)
div(div(z0, z1), z2) → div(z1, div(i(z0), z2))
i(div(z0, z1)) → div(z1, z0)
Tuples:
DIV(z0, e) → c(I(z0))
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
S tuples:
DIV(z0, e) → c(I(z0))
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
K tuples:none
Defined Rule Symbols:
div, i
Defined Pair Symbols:
DIV, I
Compound Symbols:
c, c1, c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
We considered the (Usable) Rules:
i(div(z0, z1)) → div(z1, z0)
div(z0, e) → i(z0)
div(div(z0, z1), z2) → div(z1, div(i(z0), z2))
And the Tuples:
DIV(z0, e) → c(I(z0))
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(DIV(x1, x2)) = x1
POL(I(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1)) = x1
POL(div(x1, x2)) = [1] + [2]x1 + x2
POL(e) = [3]
POL(i(x1)) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
div(z0, e) → i(z0)
div(div(z0, z1), z2) → div(z1, div(i(z0), z2))
i(div(z0, z1)) → div(z1, z0)
Tuples:
DIV(z0, e) → c(I(z0))
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
S tuples:
DIV(z0, e) → c(I(z0))
K tuples:
DIV(div(z0, z1), z2) → c1(DIV(z1, div(i(z0), z2)), DIV(i(z0), z2), I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
Defined Rule Symbols:
div, i
Defined Pair Symbols:
DIV, I
Compound Symbols:
c, c1, c2
(5) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
DIV(z0, e) → c(I(z0))
I(div(z0, z1)) → c2(DIV(z1, z0))
Now S is empty
(6) BOUNDS(O(1), O(1))