(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(X)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
rm(N, nil) → nil
rm(N, add(M, X)) → ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) → rm(N, X)
ifrm(false, N, add(M, X)) → add(M, rm(N, X))
purge(nil) → nil
purge(add(N, X)) → add(N, purge(rm(N, X)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
purge(nil) → nil
purge(add(z0, z1)) → add(z0, purge(rm(z0, z1)))
Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
S tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
K tuples:none
Defined Rule Symbols:
eq, rm, ifrm, purge
Defined Pair Symbols:
EQ, RM, IFRM, PURGE
Compound Symbols:
c3, c5, c6, c7, c9
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
We considered the (Usable) Rules:
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
And the Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(EQ(x1, x2)) = 0
POL(IFRM(x1, x2, x3)) = 0
POL(PURGE(x1)) = x1
POL(RM(x1, x2)) = 0
POL(add(x1, x2)) = [4] + x2
POL(c3(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(ifrm(x1, x2, x3)) = x3
POL(nil) = [5]
POL(rm(x1, x2)) = x2
POL(s(x1)) = [5]
POL(true) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
purge(nil) → nil
purge(add(z0, z1)) → add(z0, purge(rm(z0, z1)))
Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
S tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
K tuples:
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
Defined Rule Symbols:
eq, rm, ifrm, purge
Defined Pair Symbols:
EQ, RM, IFRM, PURGE
Compound Symbols:
c3, c5, c6, c7, c9
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
We considered the (Usable) Rules:
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
And the Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(EQ(x1, x2)) = 0
POL(IFRM(x1, x2, x3)) = [2]x3
POL(PURGE(x1)) = x12
POL(RM(x1, x2)) = [2]x2
POL(add(x1, x2)) = [2] + x2
POL(c3(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(ifrm(x1, x2, x3)) = [1] + x3
POL(nil) = 0
POL(rm(x1, x2)) = [1] + x2
POL(s(x1)) = 0
POL(true) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
purge(nil) → nil
purge(add(z0, z1)) → add(z0, purge(rm(z0, z1)))
Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
S tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
K tuples:
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
Defined Rule Symbols:
eq, rm, ifrm, purge
Defined Pair Symbols:
EQ, RM, IFRM, PURGE
Compound Symbols:
c3, c5, c6, c7, c9
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
purge(nil) → nil
purge(add(z0, z1)) → add(z0, purge(rm(z0, z1)))
Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
S tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
K tuples:
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
Defined Rule Symbols:
eq, rm, ifrm, purge
Defined Pair Symbols:
EQ, RM, IFRM, PURGE
Compound Symbols:
c3, c5, c6, c7, c9
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
We considered the (Usable) Rules:
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
And the Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(EQ(x1, x2)) = x1
POL(IFRM(x1, x2, x3)) = [2]x2·x3
POL(PURGE(x1)) = [2]x12
POL(RM(x1, x2)) = x1 + [2]x1·x2
POL(add(x1, x2)) = [2] + x1 + x2
POL(c3(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(ifrm(x1, x2, x3)) = x3
POL(nil) = 0
POL(rm(x1, x2)) = x2
POL(s(x1)) = [2] + x1
POL(true) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq(0, 0) → true
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
rm(z0, nil) → nil
rm(z0, add(z1, z2)) → ifrm(eq(z0, z1), z0, add(z1, z2))
ifrm(true, z0, add(z1, z2)) → rm(z0, z2)
ifrm(false, z0, add(z1, z2)) → add(z1, rm(z0, z2))
purge(nil) → nil
purge(add(z0, z1)) → add(z0, purge(rm(z0, z1)))
Tuples:
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
S tuples:none
K tuples:
PURGE(add(z0, z1)) → c9(PURGE(rm(z0, z1)), RM(z0, z1))
IFRM(true, z0, add(z1, z2)) → c6(RM(z0, z2))
IFRM(false, z0, add(z1, z2)) → c7(RM(z0, z2))
RM(z0, add(z1, z2)) → c5(IFRM(eq(z0, z1), z0, add(z1, z2)), EQ(z0, z1))
EQ(s(z0), s(z1)) → c3(EQ(z0, z1))
Defined Rule Symbols:
eq, rm, ifrm, purge
Defined Pair Symbols:
EQ, RM, IFRM, PURGE
Compound Symbols:
c3, c5, c6, c7, c9
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))