We consider the following Problem: Strict Trs: { perfectp(0()) -> false() , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false() , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { perfectp(0()) -> false() , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false() , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(perfectp) = {}, Uargs(s) = {}, Uargs(f) = {}, Uargs(minus) = {}, Uargs(if) = {3}, Uargs(le) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: perfectp(x1) = [0 0] x1 + [1] [1 1] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] f(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [1] [1 1] [1 1] [0 0] [0 0] [1] true() = [0] [0] minus(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3) = [1 1] x1 + [0 0] x2 + [1 0] x3 + [0] [0 0] [0 1] [0 0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} Weak Trs: { perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {perfectp(s(x)) -> f(x, s(0()), s(x), s(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(perfectp) = {}, Uargs(s) = {}, Uargs(f) = {}, Uargs(minus) = {}, Uargs(if) = {3}, Uargs(le) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: perfectp(x1) = [0 0] x1 + [1] [1 1] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] f(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0] [0 0] [1 1] [0 0] [0 0] [1] true() = [0] [0] minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [1 0] [0 0] [0] if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1] [0 1] [0 1] [0 0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} Weak Trs: { perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(perfectp) = {}, Uargs(s) = {}, Uargs(f) = {}, Uargs(minus) = {}, Uargs(if) = {3}, Uargs(le) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: perfectp(x1) = [1 0] x1 + [2] [0 0] [1] 0() = [2] [3] false() = [0] [0] s(x1) = [1 2] x1 + [0] [0 0] [2] f(x1, x2, x3, x4) = [1 2] x1 + [0 0] x2 + [0 0] x3 + [0 1] x4 + [0] [0 0] [0 0] [0 0] [0 0] [0] true() = [0] [0] minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3) = [1 3] x1 + [0 0] x2 + [1 0] x3 + [2] [0 0] [0 0] [0 0] [1] le(x1, x2) = [0 0] x1 + [0 0] x2 + [2] [0 0] [0 0] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} Weak Trs: { f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(perfectp) = {}, Uargs(s) = {}, Uargs(f) = {}, Uargs(minus) = {}, Uargs(if) = {3}, Uargs(le) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: perfectp(x1) = [1 3] x1 + [1] [0 0] [1] 0() = [3] [0] false() = [0] [0] s(x1) = [1 3] x1 + [3] [0 0] [3] f(x1, x2, x3, x4) = [1 3] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [0] true() = [0] [0] minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3) = [1 3] x1 + [0 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [2] [0 0] [0 0] [2] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) , f(s(x), 0(), z, u) -> f(x, u, minus(z, s(x)), u) , perfectp(s(x)) -> f(x, s(0()), s(x), s(x)) , perfectp(0()) -> false() , f(0(), y, 0(), u) -> true() , f(0(), y, s(z), u) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))