(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(h(g(x))) → g(x)
g(g(x)) → g(h(g(x)))
h(h(x)) → h(f(h(x), x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(h(g(z0))) → c(G(z0))
G(g(z0)) → c1(G(h(g(z0))), H(g(z0)), G(z0))
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
S tuples:
G(h(g(z0))) → c(G(z0))
G(g(z0)) → c1(G(h(g(z0))), H(g(z0)), G(z0))
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
K tuples:none
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c, c1, c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(h(g(z0))) → c(G(z0))
G(g(z0)) → c1(G(h(g(z0))), H(g(z0)), G(z0))
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1)) = 0
POL(H(x1)) = [2]x1
POL(c(x1)) = x1
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(f(x1, x2)) = x2
POL(g(x1)) = 0
POL(h(x1)) = [2] + [2]x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(h(g(z0))) → c(G(z0))
G(g(z0)) → c1(G(h(g(z0))), H(g(z0)), G(z0))
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
S tuples:
G(h(g(z0))) → c(G(z0))
G(g(z0)) → c1(G(h(g(z0))), H(g(z0)), G(z0))
K tuples:
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c, c1, c2
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
G(
g(
z0)) →
c1(
G(
h(
g(
z0))),
H(
g(
z0)),
G(
z0)) by
G(g(x0)) → c1(G(h(g(x0))), G(x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(h(g(z0))) → c(G(z0))
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
G(g(x0)) → c1(G(h(g(x0))), G(x0))
S tuples:
G(h(g(z0))) → c(G(z0))
G(g(x0)) → c1(G(h(g(x0))), G(x0))
K tuples:
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c, c2, c1
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
H(
h(
z0)) →
c2(
H(
f(
h(
z0),
z0)),
H(
z0)) by
H(h(x0)) → c2(H(x0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(h(g(z0))) → c(G(z0))
G(g(x0)) → c1(G(h(g(x0))), G(x0))
H(h(x0)) → c2(H(x0))
S tuples:
G(h(g(z0))) → c(G(z0))
G(g(x0)) → c1(G(h(g(x0))), G(x0))
K tuples:
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c, c1, c2
(9) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
G(
h(
g(
z0))) →
c(
G(
z0)) by
G(h(g(h(g(y0))))) → c(G(h(g(y0))))
G(h(g(g(y0)))) → c(G(g(y0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
H(h(x0)) → c2(H(x0))
G(h(g(h(g(y0))))) → c(G(h(g(y0))))
G(h(g(g(y0)))) → c(G(g(y0)))
S tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
G(h(g(h(g(y0))))) → c(G(h(g(y0))))
G(h(g(g(y0)))) → c(G(g(y0)))
K tuples:
H(h(z0)) → c2(H(f(h(z0), z0)), H(z0))
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c1, c2, c
(11) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
G(h(g(g(y0)))) → c(G(g(y0)))
Removed 1 trailing nodes:
G(h(g(h(g(y0))))) → c(G(h(g(y0))))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
H(h(x0)) → c2(H(x0))
S tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
K tuples:none
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c1, c2
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(g(x0)) → c1(G(h(g(x0))), G(x0))
We considered the (Usable) Rules:none
And the Tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
H(h(x0)) → c2(H(x0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1)) = [4]x1
POL(H(x1)) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(g(x1)) = [2] + [2]x1
POL(h(x1)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(h(g(z0))) → g(z0)
g(g(z0)) → g(h(g(z0)))
h(h(z0)) → h(f(h(z0), z0))
Tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
H(h(x0)) → c2(H(x0))
S tuples:none
K tuples:
G(g(x0)) → c1(G(h(g(x0))), G(x0))
Defined Rule Symbols:
g, h
Defined Pair Symbols:
G, H
Compound Symbols:
c1, c2
(15) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(16) BOUNDS(O(1), O(1))