We consider the following Problem:

  Strict Trs:
    {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
     , select(cons(ap, xs)) -> ap
     , select(cons(ap, xs)) -> select(xs)
     , addchild(node(y, ys), node(n, xs)) ->
       node(y, cons(node(n, xs), ys))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
       , select(cons(ap, xs)) -> ap
       , select(cons(ap, xs)) -> select(xs)
       , addchild(node(y, ys), node(n, xs)) ->
         node(y, cons(node(n, xs), ys))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {select(cons(ap, xs)) -> select(xs)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(f) = {1}, Uargs(node) = {}, Uargs(s) = {},
        Uargs(addchild) = {1}, Uargs(select) = {}, Uargs(cons) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       f(x1) = [1 0] x1 + [1]
               [0 0]      [1]
       node(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [1]
       s(x1) = [0 0] x1 + [0]
               [0 0]      [0]
       addchild(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [1]
       select(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
       cons(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                      [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
         , select(cons(ap, xs)) -> ap
         , addchild(node(y, ys), node(n, xs)) ->
           node(y, cons(node(n, xs), ys))}
      Weak Trs: {select(cons(ap, xs)) -> select(xs)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {addchild(node(y, ys), node(n, xs)) ->
         node(y, cons(node(n, xs), ys))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(f) = {1}, Uargs(node) = {}, Uargs(s) = {},
          Uargs(addchild) = {1}, Uargs(select) = {}, Uargs(cons) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         f(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
         node(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [1]
         s(x1) = [0 0] x1 + [0]
                 [0 0]      [0]
         addchild(x1, x2) = [1 0] x1 + [0 0] x2 + [2]
                            [0 0]      [0 0]      [1]
         select(x1) = [1 0] x1 + [2]
                      [0 0]      [1]
         cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
           , select(cons(ap, xs)) -> ap}
        Weak Trs:
          {  addchild(node(y, ys), node(n, xs)) ->
             node(y, cons(node(n, xs), ys))
           , select(cons(ap, xs)) -> select(xs)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(f) = {1}, Uargs(node) = {}, Uargs(s) = {},
            Uargs(addchild) = {1}, Uargs(select) = {}, Uargs(cons) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           f(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
           node(x1, x2) = [0 0] x1 + [1 0] x2 + [2]
                          [0 0]      [0 0]      [1]
           s(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
           addchild(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [1]
           select(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
           cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs: {select(cons(ap, xs)) -> ap}
          Weak Trs:
            {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
             , addchild(node(y, ys), node(n, xs)) ->
               node(y, cons(node(n, xs), ys))
             , select(cons(ap, xs)) -> select(xs)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          We consider the following Problem:
          
            Strict Trs: {select(cons(ap, xs)) -> ap}
            Weak Trs:
              {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
               , addchild(node(y, ys), node(n, xs)) ->
                 node(y, cons(node(n, xs), ys))
               , select(cons(ap, xs)) -> select(xs)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            We have computed the following dependency pairs
            
              Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
              Weak DPs:
                {  f^#(node(s(n), xs)) -> f^#(addchild(select(xs), node(n, xs)))
                 , addchild^#(node(y, ys), node(n, xs)) -> c_3()
                 , select^#(cons(ap, xs)) -> select^#(xs)}
            
            We consider the following Problem:
            
              Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
              Strict Trs: {select(cons(ap, xs)) -> ap}
              Weak DPs:
                {  f^#(node(s(n), xs)) -> f^#(addchild(select(xs), node(n, xs)))
                 , addchild^#(node(y, ys), node(n, xs)) -> c_3()
                 , select^#(cons(ap, xs)) -> select^#(xs)}
              Weak Trs:
                {  f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs)))
                 , addchild(node(y, ys), node(n, xs)) ->
                   node(y, cons(node(n, xs), ys))
                 , select(cons(ap, xs)) -> select(xs)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We replace strict/weak-rules by the corresponding usable rules:
              
                Strict Usable Rules: {select(cons(ap, xs)) -> ap}
                Weak Usable Rules:
                  {  addchild(node(y, ys), node(n, xs)) ->
                     node(y, cons(node(n, xs), ys))
                   , select(cons(ap, xs)) -> select(xs)}
              
              We consider the following Problem:
              
                Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                Strict Trs: {select(cons(ap, xs)) -> ap}
                Weak DPs:
                  {  f^#(node(s(n), xs)) -> f^#(addchild(select(xs), node(n, xs)))
                   , addchild^#(node(y, ys), node(n, xs)) -> c_3()
                   , select^#(cons(ap, xs)) -> select^#(xs)}
                Weak Trs:
                  {  addchild(node(y, ys), node(n, xs)) ->
                     node(y, cons(node(n, xs), ys))
                   , select(cons(ap, xs)) -> select(xs)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We consider the following Problem:
                
                  Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                  Strict Trs: {select(cons(ap, xs)) -> ap}
                  Weak DPs:
                    {  f^#(node(s(n), xs)) -> f^#(addchild(select(xs), node(n, xs)))
                     , addchild^#(node(y, ys), node(n, xs)) -> c_3()
                     , select^#(cons(ap, xs)) -> select^#(xs)}
                  Weak Trs:
                    {  addchild(node(y, ys), node(n, xs)) ->
                       node(y, cons(node(n, xs), ys))
                     , select(cons(ap, xs)) -> select(xs)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We use following congruence DG for path analysis
                  
                  ->3:{2}                                                     [   YES(O(1),O(1))   ]
                  
                  ->2:{3}                                                     [   YES(O(1),O(1))   ]
                  
                  ->1:{4}                                                     [      subsumed      ]
                     |
                     `->4:{1}                                                 [   YES(?,O(n^1))    ]
                  
                  
                  Here dependency-pairs are as follows:
                  
                  Strict DPs:
                    {1: select^#(cons(ap, xs)) -> c_1()}
                  WeakDPs DPs:
                    {  2: f^#(node(s(n), xs)) -> f^#(addchild(select(xs), node(n, xs)))
                     , 3: addchild^#(node(y, ys), node(n, xs)) -> c_3()
                     , 4: select^#(cons(ap, xs)) -> select^#(xs)}
                  
                  * Path 3:{2}: YES(O(1),O(1))
                    --------------------------
                    
                    We consider the following Problem:
                    
                      Strict Trs: {select(cons(ap, xs)) -> ap}
                      Weak Trs:
                        {  addchild(node(y, ys), node(n, xs)) ->
                           node(y, cons(node(n, xs), ys))
                         , select(cons(ap, xs)) -> select(xs)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs: {select(cons(ap, xs)) -> ap}
                        Weak Trs:
                          {  addchild(node(y, ys), node(n, xs)) ->
                             node(y, cons(node(n, xs), ys))
                           , select(cons(ap, xs)) -> select(xs)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs: {select(cons(ap, xs)) -> ap}
                          Weak Trs:
                            {  addchild(node(y, ys), node(n, xs)) ->
                               node(y, cons(node(n, xs), ys))
                             , select(cons(ap, xs)) -> select(xs)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          No rule is usable.
                          
                          We consider the following Problem:
                          
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            Empty rules are trivially bounded
                  
                  * Path 2:{3}: YES(O(1),O(1))
                    --------------------------
                    
                    We consider the following Problem:
                    
                      Strict Trs: {select(cons(ap, xs)) -> ap}
                      Weak Trs:
                        {  addchild(node(y, ys), node(n, xs)) ->
                           node(y, cons(node(n, xs), ys))
                         , select(cons(ap, xs)) -> select(xs)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs: {select(cons(ap, xs)) -> ap}
                        Weak Trs:
                          {  addchild(node(y, ys), node(n, xs)) ->
                             node(y, cons(node(n, xs), ys))
                           , select(cons(ap, xs)) -> select(xs)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs: {select(cons(ap, xs)) -> ap}
                          Weak Trs:
                            {  addchild(node(y, ys), node(n, xs)) ->
                               node(y, cons(node(n, xs), ys))
                             , select(cons(ap, xs)) -> select(xs)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          No rule is usable.
                          
                          We consider the following Problem:
                          
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            Empty rules are trivially bounded
                  
                  * Path 1:{4}: subsumed
                    --------------------
                    
                    This path is subsumed by the proof of paths 1:{4}->4:{1}.
                  
                  * Path 1:{4}->4:{1}: YES(?,O(n^1))
                    --------------------------------
                    
                    We consider the following Problem:
                    
                      Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                      Strict Trs: {select(cons(ap, xs)) -> ap}
                      Weak DPs: {select^#(cons(ap, xs)) -> select^#(xs)}
                      Weak Trs:
                        {  addchild(node(y, ys), node(n, xs)) ->
                           node(y, cons(node(n, xs), ys))
                         , select(cons(ap, xs)) -> select(xs)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                        Strict Trs: {select(cons(ap, xs)) -> ap}
                        Weak DPs: {select^#(cons(ap, xs)) -> select^#(xs)}
                        Weak Trs:
                          {  addchild(node(y, ys), node(n, xs)) ->
                             node(y, cons(node(n, xs), ys))
                           , select(cons(ap, xs)) -> select(xs)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                          Strict Trs: {select(cons(ap, xs)) -> ap}
                          Weak DPs: {select^#(cons(ap, xs)) -> select^#(xs)}
                          Weak Trs:
                            {  addchild(node(y, ys), node(n, xs)) ->
                               node(y, cons(node(n, xs), ys))
                             , select(cons(ap, xs)) -> select(xs)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          No rule is usable.
                          
                          We consider the following Problem:
                          
                            Strict DPs: {select^#(cons(ap, xs)) -> c_1()}
                            Weak DPs: {select^#(cons(ap, xs)) -> select^#(xs)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            The problem is match-bounded by 1.
                            The enriched problem is compatible with the following automaton:
                            {  cons_0(2, 2) -> 2
                             , select^#_0(2) -> 1
                             , c_1_1() -> 1}

Hurray, we answered YES(?,O(n^1))