(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a, x), y) → f(f(x, f(a, y)), a)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, z0), z1) → c(F(f(z0, f(a, z1)), a), F(z0, f(a, z1)), F(a, z1))
S tuples:
F(f(a, z0), z1) → c(F(f(z0, f(a, z1)), a), F(z0, f(a, z1)), F(a, z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
z0),
z1) →
c(
F(
f(
z0,
f(
a,
z1)),
a),
F(
z0,
f(
a,
z1)),
F(
a,
z1)) by
F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))
S tuples:
F(f(a, x0), x1) → c(F(f(x0, f(a, x1)), a), F(x0, f(a, x1)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
f(
a,
x0),
x1) →
c(
F(
f(
x0,
f(
a,
x1)),
a),
F(
x0,
f(
a,
x1))) by
F(f(a, a), z1) → c(F(f(a, f(a, z1)), a), F(a, f(a, z1)))
F(f(a, f(a, y0)), z1) → c(F(f(f(a, y0), f(a, z1)), a), F(f(a, y0), f(a, z1)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, a), z1) → c(F(f(a, f(a, z1)), a), F(a, f(a, z1)))
F(f(a, f(a, y0)), z1) → c(F(f(f(a, y0), f(a, z1)), a), F(f(a, y0), f(a, z1)))
S tuples:
F(f(a, a), z1) → c(F(f(a, f(a, z1)), a), F(a, f(a, z1)))
F(f(a, f(a, y0)), z1) → c(F(f(f(a, y0), f(a, z1)), a), F(f(a, y0), f(a, z1)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
a),
z1) →
c(
F(
f(
a,
f(
a,
z1)),
a),
F(
a,
f(
a,
z1))) by
F(f(a, a), x0) → c(F(f(a, f(a, x0)), a))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, f(a, y0)), z1) → c(F(f(f(a, y0), f(a, z1)), a), F(f(a, y0), f(a, z1)))
F(f(a, a), x0) → c(F(f(a, f(a, x0)), a))
S tuples:
F(f(a, f(a, y0)), z1) → c(F(f(f(a, y0), f(a, z1)), a), F(f(a, y0), f(a, z1)))
F(f(a, a), x0) → c(F(f(a, f(a, x0)), a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
f(
a,
y0)),
z1) →
c(
F(
f(
f(
a,
y0),
f(
a,
z1)),
a),
F(
f(
a,
y0),
f(
a,
z1))) by
F(f(a, f(a, z0)), x1) → c(F(f(f(z0, f(a, f(a, x1))), a), a), F(f(a, z0), f(a, x1)))
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, a), x0) → c(F(f(a, f(a, x0)), a))
F(f(a, f(a, z0)), x1) → c(F(f(f(z0, f(a, f(a, x1))), a), a), F(f(a, z0), f(a, x1)))
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
S tuples:
F(f(a, a), x0) → c(F(f(a, f(a, x0)), a))
F(f(a, f(a, z0)), x1) → c(F(f(f(z0, f(a, f(a, x1))), a), a), F(f(a, z0), f(a, x1)))
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(11) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
f(
a,
a),
x0) →
c(
F(
f(
a,
f(
a,
x0)),
a)) by
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, f(a, z0)), x1) → c(F(f(f(z0, f(a, f(a, x1))), a), a), F(f(a, z0), f(a, x1)))
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
S tuples:
F(f(a, f(a, z0)), x1) → c(F(f(f(z0, f(a, f(a, x1))), a), a), F(f(a, z0), f(a, x1)))
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(13) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
F(
f(
a,
f(
a,
z0)),
x1) →
c(
F(
f(
f(
z0,
f(
a,
f(
a,
x1))),
a),
a),
F(
f(
a,
z0),
f(
a,
x1))) by
F(f(a, f(a, z0)), a) → c(F(f(f(z0, f(a, f(a, a))), a), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, z0)), f(a, x1)) → c(F(f(f(z0, f(a, f(a, f(a, x1)))), a), a), F(f(a, z0), f(a, f(a, x1))))
F(f(a, f(a, a)), a) → c(F(f(f(a, f(a, f(a, a))), a), a), F(f(a, a), f(a, a)))
F(f(a, f(a, f(a, x0))), a) → c(F(f(f(f(a, x0), f(a, f(a, a))), a), a), F(f(a, f(a, x0)), f(a, a)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
F(f(a, f(a, z0)), a) → c(F(f(f(z0, f(a, f(a, a))), a), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, z0)), f(a, x1)) → c(F(f(f(z0, f(a, f(a, f(a, x1)))), a), a), F(f(a, z0), f(a, f(a, x1))))
F(f(a, f(a, a)), a) → c(F(f(f(a, f(a, f(a, a))), a), a), F(f(a, a), f(a, a)))
F(f(a, f(a, f(a, x0))), a) → c(F(f(f(f(a, x0), f(a, f(a, a))), a), a), F(f(a, f(a, x0)), f(a, a)))
S tuples:
F(f(a, f(a, x0)), x1) → c(F(f(a, x0), f(a, x1)))
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
F(f(a, f(a, z0)), a) → c(F(f(f(z0, f(a, f(a, a))), a), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, z0)), f(a, x1)) → c(F(f(f(z0, f(a, f(a, f(a, x1)))), a), a), F(f(a, z0), f(a, f(a, x1))))
F(f(a, f(a, a)), a) → c(F(f(f(a, f(a, f(a, a))), a), a), F(f(a, a), f(a, a)))
F(f(a, f(a, f(a, x0))), a) → c(F(f(f(f(a, x0), f(a, f(a, a))), a), a), F(f(a, f(a, x0)), f(a, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(15) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
f(
a,
f(
a,
x0)),
x1) →
c(
F(
f(
a,
x0),
f(
a,
x1))) by
F(f(a, f(a, f(a, y0))), z1) → c(F(f(a, f(a, y0)), f(a, z1)))
F(f(a, f(a, a)), z1) → c(F(f(a, a), f(a, z1)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), z1) → f(f(z0, f(a, z1)), a)
Tuples:
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
F(f(a, f(a, z0)), a) → c(F(f(f(z0, f(a, f(a, a))), a), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, z0)), f(a, x1)) → c(F(f(f(z0, f(a, f(a, f(a, x1)))), a), a), F(f(a, z0), f(a, f(a, x1))))
F(f(a, f(a, a)), a) → c(F(f(f(a, f(a, f(a, a))), a), a), F(f(a, a), f(a, a)))
F(f(a, f(a, f(a, x0))), a) → c(F(f(f(f(a, x0), f(a, f(a, a))), a), a), F(f(a, f(a, x0)), f(a, a)))
F(f(a, f(a, f(a, y0))), z1) → c(F(f(a, f(a, y0)), f(a, z1)))
F(f(a, f(a, a)), z1) → c(F(f(a, a), f(a, z1)))
S tuples:
F(f(a, a), a) → c(F(f(a, f(a, a)), a))
F(f(a, a), f(a, x1)) → c(F(f(a, f(a, f(a, x1))), a))
F(f(a, f(a, z0)), a) → c(F(f(f(z0, f(a, f(a, a))), a), a), F(f(a, z0), f(a, a)))
F(f(a, f(a, z0)), f(a, x1)) → c(F(f(f(z0, f(a, f(a, f(a, x1)))), a), a), F(f(a, z0), f(a, f(a, x1))))
F(f(a, f(a, a)), a) → c(F(f(f(a, f(a, f(a, a))), a), a), F(f(a, a), f(a, a)))
F(f(a, f(a, f(a, x0))), a) → c(F(f(f(f(a, x0), f(a, f(a, a))), a), a), F(f(a, f(a, x0)), f(a, a)))
F(f(a, f(a, f(a, y0))), z1) → c(F(f(a, f(a, y0)), f(a, z1)))
F(f(a, f(a, a)), z1) → c(F(f(a, a), f(a, z1)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(17) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
a0() → 0
f0(0, 0) → 1
(18) BOUNDS(O(1), O(n^1))