We consider the following Problem: Strict Trs: { +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(1(), 9()) -> c(1(), 0()) , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(3(), 7()) -> c(1(), 0()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 7()) -> c(1(), 2()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(6(), 4()) -> c(1(), 0()) , +(6(), 5()) -> c(1(), 1()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(7(), 3()) -> c(1(), 0()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 5()) -> c(1(), 2()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 5()) -> c(1(), 3()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 0()) -> 9() , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(0(), x) -> x , c(x, c(y, z)) -> c(+(x, y), z)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(1(), 9()) -> c(1(), 0()) , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(3(), 7()) -> c(1(), 0()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 7()) -> c(1(), 2()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(6(), 4()) -> c(1(), 0()) , +(6(), 5()) -> c(1(), 1()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(7(), 3()) -> c(1(), 0()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 5()) -> c(1(), 2()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 5()) -> c(1(), 3()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 0()) -> 9() , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(0(), x) -> x , c(x, c(y, z)) -> c(+(x, y), z)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [1] 0() = [0] [0] 1() = [0] [0] 2() = [0] [0] 3() = [0] [0] 4() = [0] [0] 5() = [0] [0] 6() = [0] [0] 7() = [0] [0] 8() = [0] [1] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 7()) -> c(1(), 0()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 7()) -> c(1(), 2()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 5()) -> c(1(), 1()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 5()) -> c(1(), 2()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 5()) -> c(1(), 3()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(0(), x) -> x , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {c(0(), x) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] 1() = [0] [0] 2() = [0] [0] 3() = [0] [0] 4() = [0] [0] 5() = [0] [0] 6() = [0] [0] 7() = [0] [0] 8() = [0] [0] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 7()) -> c(1(), 0()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 7()) -> c(1(), 2()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 5()) -> c(1(), 1()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 5()) -> c(1(), 2()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 5()) -> c(1(), 3()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [0] 0() = [2] [0] 1() = [3] [2] 2() = [0] [3] 3() = [3] [2] 4() = [1] [2] 5() = [1] [3] 6() = [1] [0] 7() = [2] [1] 8() = [0] [0] 9() = [1] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 5()) -> c(1(), 1()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 5()) -> c(1(), 3()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] 0() = [0] [0] 1() = [0] [0] 2() = [0] [0] 3() = [0] [0] 4() = [0] [0] 5() = [1] [1] 6() = [0] [0] 7() = [0] [1] 8() = [0] [0] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 7()) -> c(1(), 1()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 7()) -> c(1(), 3()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 8()) -> c(1(), 5()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 7()) -> c(1(), 5()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] 0() = [0] [0] 1() = [0] [0] 2() = [0] [1] 3() = [0] [0] 4() = [0] [0] 5() = [0] [1] 6() = [0] [0] 7() = [1] [1] 8() = [0] [0] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(7(), 8()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {+(7(), 8()) -> c(1(), 5())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] 1() = [0] [0] 2() = [0] [0] 3() = [0] [0] 4() = [0] [0] 5() = [0] [0] 6() = [0] [0] 7() = [1] [0] 8() = [0] [0] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(7(), 8()) -> c(1(), 5()) , +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 1] [1] 0() = [1] [0] 1() = [0] [0] 2() = [2] [1] 3() = [2] [2] 4() = [0] [2] 5() = [0] [2] 6() = [0] [2] 7() = [0] [2] 8() = [1] [3] 9() = [0] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(9(), 9()) -> c(1(), 8()) , +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(7(), 8()) -> c(1(), 5()) , +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {+(9(), 9()) -> c(1(), 8())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] 0() = [0] [0] 1() = [0] [3] 2() = [0] [2] 3() = [0] [1] 4() = [1] [0] 5() = [1] [2] 6() = [1] [1] 7() = [2] [2] 8() = [2] [1] 9() = [2] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z)) , c(x, c(y, z)) -> c(+(x, y), z)} Weak Trs: { +(9(), 9()) -> c(1(), 8()) , +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(7(), 8()) -> c(1(), 5()) , +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {c(x, c(y, z)) -> c(+(x, y), z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(+) = {}, Uargs(c) = {1, 2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: +(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [1] [0] 1() = [1] [0] 2() = [1] [0] 3() = [2] [0] 4() = [2] [0] 5() = [3] [0] 6() = [3] [0] 7() = [3] [0] 8() = [3] [0] 9() = [3] [0] c(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z))} Weak Trs: { c(x, c(y, z)) -> c(+(x, y), z) , +(9(), 9()) -> c(1(), 8()) , +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(7(), 8()) -> c(1(), 5()) , +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { +(x, c(y, z)) -> c(y, +(x, z)) , +(c(x, y), z) -> c(x, +(y, z))} Weak Trs: { c(x, c(y, z)) -> c(+(x, y), z) , +(9(), 9()) -> c(1(), 8()) , +(1(), 9()) -> c(1(), 0()) , +(2(), 8()) -> c(1(), 0()) , +(2(), 9()) -> c(1(), 1()) , +(3(), 8()) -> c(1(), 1()) , +(3(), 9()) -> c(1(), 2()) , +(4(), 6()) -> c(1(), 0()) , +(4(), 8()) -> c(1(), 2()) , +(4(), 9()) -> c(1(), 3()) , +(6(), 4()) -> c(1(), 0()) , +(6(), 6()) -> c(1(), 2()) , +(6(), 8()) -> c(1(), 4()) , +(6(), 9()) -> c(1(), 5()) , +(8(), 2()) -> c(1(), 0()) , +(8(), 3()) -> c(1(), 1()) , +(8(), 4()) -> c(1(), 2()) , +(8(), 6()) -> c(1(), 4()) , +(8(), 8()) -> c(1(), 6()) , +(8(), 9()) -> c(1(), 7()) , +(9(), 1()) -> c(1(), 0()) , +(9(), 2()) -> c(1(), 1()) , +(9(), 3()) -> c(1(), 2()) , +(9(), 4()) -> c(1(), 3()) , +(9(), 6()) -> c(1(), 5()) , +(9(), 8()) -> c(1(), 7()) , +(7(), 8()) -> c(1(), 5()) , +(4(), 7()) -> c(1(), 1()) , +(6(), 7()) -> c(1(), 3()) , +(7(), 4()) -> c(1(), 1()) , +(7(), 6()) -> c(1(), 3()) , +(7(), 7()) -> c(1(), 4()) , +(7(), 9()) -> c(1(), 6()) , +(8(), 7()) -> c(1(), 5()) , +(9(), 7()) -> c(1(), 6()) , +(5(), 5()) -> c(1(), 0()) , +(5(), 6()) -> c(1(), 1()) , +(5(), 8()) -> c(1(), 3()) , +(5(), 9()) -> c(1(), 4()) , +(6(), 5()) -> c(1(), 1()) , +(8(), 5()) -> c(1(), 3()) , +(9(), 5()) -> c(1(), 4()) , +(3(), 7()) -> c(1(), 0()) , +(5(), 7()) -> c(1(), 2()) , +(7(), 3()) -> c(1(), 0()) , +(7(), 5()) -> c(1(), 2()) , c(0(), x) -> x , +(0(), 0()) -> 0() , +(0(), 1()) -> 1() , +(0(), 2()) -> 2() , +(0(), 3()) -> 3() , +(0(), 4()) -> 4() , +(0(), 5()) -> 5() , +(0(), 6()) -> 6() , +(0(), 7()) -> 7() , +(0(), 8()) -> 8() , +(0(), 9()) -> 9() , +(1(), 0()) -> 1() , +(1(), 1()) -> 2() , +(1(), 2()) -> 3() , +(1(), 3()) -> 4() , +(1(), 4()) -> 5() , +(1(), 5()) -> 6() , +(1(), 6()) -> 7() , +(1(), 7()) -> 8() , +(1(), 8()) -> 9() , +(2(), 0()) -> 2() , +(2(), 1()) -> 3() , +(2(), 2()) -> 4() , +(2(), 3()) -> 5() , +(2(), 4()) -> 6() , +(2(), 5()) -> 7() , +(2(), 6()) -> 8() , +(2(), 7()) -> 9() , +(3(), 0()) -> 3() , +(3(), 1()) -> 4() , +(3(), 2()) -> 5() , +(3(), 3()) -> 6() , +(3(), 4()) -> 7() , +(3(), 5()) -> 8() , +(3(), 6()) -> 9() , +(4(), 0()) -> 4() , +(4(), 1()) -> 5() , +(4(), 2()) -> 6() , +(4(), 3()) -> 7() , +(4(), 4()) -> 8() , +(4(), 5()) -> 9() , +(5(), 0()) -> 5() , +(5(), 1()) -> 6() , +(5(), 2()) -> 7() , +(5(), 3()) -> 8() , +(5(), 4()) -> 9() , +(6(), 0()) -> 6() , +(6(), 1()) -> 7() , +(6(), 2()) -> 8() , +(6(), 3()) -> 9() , +(7(), 0()) -> 7() , +(7(), 1()) -> 8() , +(7(), 2()) -> 9() , +(8(), 0()) -> 8() , +(8(), 1()) -> 9() , +(9(), 0()) -> 9()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 0. The enriched problem is compatible with the following automaton: { +_0(2, 2) -> 1 , 0_0() -> 1 , 0_0() -> 2 , 1_0() -> 1 , 1_0() -> 2 , 2_0() -> 1 , 2_0() -> 2 , 3_0() -> 1 , 3_0() -> 2 , 4_0() -> 1 , 4_0() -> 2 , 5_0() -> 1 , 5_0() -> 2 , 6_0() -> 1 , 6_0() -> 2 , 7_0() -> 1 , 7_0() -> 2 , 8_0() -> 1 , 8_0() -> 2 , 9_0() -> 1 , 9_0() -> 2 , c_0(2, 2) -> 1} Hurray, we answered YES(?,O(n^1))