We consider the following Problem:

  Strict Trs:
    {  +(0(), 0()) -> 0()
     , +(0(), 1()) -> 1()
     , +(0(), 2()) -> 2()
     , +(0(), 3()) -> 3()
     , +(0(), 4()) -> 4()
     , +(0(), 5()) -> 5()
     , +(0(), 6()) -> 6()
     , +(0(), 7()) -> 7()
     , +(0(), 8()) -> 8()
     , +(0(), 9()) -> 9()
     , +(1(), 0()) -> 1()
     , +(1(), 1()) -> 2()
     , +(1(), 2()) -> 3()
     , +(1(), 3()) -> 4()
     , +(1(), 4()) -> 5()
     , +(1(), 5()) -> 6()
     , +(1(), 6()) -> 7()
     , +(1(), 7()) -> 8()
     , +(1(), 8()) -> 9()
     , +(1(), 9()) -> c(1(), 0())
     , +(2(), 0()) -> 2()
     , +(2(), 1()) -> 3()
     , +(2(), 2()) -> 4()
     , +(2(), 3()) -> 5()
     , +(2(), 4()) -> 6()
     , +(2(), 5()) -> 7()
     , +(2(), 6()) -> 8()
     , +(2(), 7()) -> 9()
     , +(2(), 8()) -> c(1(), 0())
     , +(2(), 9()) -> c(1(), 1())
     , +(3(), 0()) -> 3()
     , +(3(), 1()) -> 4()
     , +(3(), 2()) -> 5()
     , +(3(), 3()) -> 6()
     , +(3(), 4()) -> 7()
     , +(3(), 5()) -> 8()
     , +(3(), 6()) -> 9()
     , +(3(), 7()) -> c(1(), 0())
     , +(3(), 8()) -> c(1(), 1())
     , +(3(), 9()) -> c(1(), 2())
     , +(4(), 0()) -> 4()
     , +(4(), 1()) -> 5()
     , +(4(), 2()) -> 6()
     , +(4(), 3()) -> 7()
     , +(4(), 4()) -> 8()
     , +(4(), 5()) -> 9()
     , +(4(), 6()) -> c(1(), 0())
     , +(4(), 7()) -> c(1(), 1())
     , +(4(), 8()) -> c(1(), 2())
     , +(4(), 9()) -> c(1(), 3())
     , +(5(), 0()) -> 5()
     , +(5(), 1()) -> 6()
     , +(5(), 2()) -> 7()
     , +(5(), 3()) -> 8()
     , +(5(), 4()) -> 9()
     , +(5(), 5()) -> c(1(), 0())
     , +(5(), 6()) -> c(1(), 1())
     , +(5(), 7()) -> c(1(), 2())
     , +(5(), 8()) -> c(1(), 3())
     , +(5(), 9()) -> c(1(), 4())
     , +(6(), 0()) -> 6()
     , +(6(), 1()) -> 7()
     , +(6(), 2()) -> 8()
     , +(6(), 3()) -> 9()
     , +(6(), 4()) -> c(1(), 0())
     , +(6(), 5()) -> c(1(), 1())
     , +(6(), 6()) -> c(1(), 2())
     , +(6(), 7()) -> c(1(), 3())
     , +(6(), 8()) -> c(1(), 4())
     , +(6(), 9()) -> c(1(), 5())
     , +(7(), 0()) -> 7()
     , +(7(), 1()) -> 8()
     , +(7(), 2()) -> 9()
     , +(7(), 3()) -> c(1(), 0())
     , +(7(), 4()) -> c(1(), 1())
     , +(7(), 5()) -> c(1(), 2())
     , +(7(), 6()) -> c(1(), 3())
     , +(7(), 7()) -> c(1(), 4())
     , +(7(), 8()) -> c(1(), 5())
     , +(7(), 9()) -> c(1(), 6())
     , +(8(), 0()) -> 8()
     , +(8(), 1()) -> 9()
     , +(8(), 2()) -> c(1(), 0())
     , +(8(), 3()) -> c(1(), 1())
     , +(8(), 4()) -> c(1(), 2())
     , +(8(), 5()) -> c(1(), 3())
     , +(8(), 6()) -> c(1(), 4())
     , +(8(), 7()) -> c(1(), 5())
     , +(8(), 8()) -> c(1(), 6())
     , +(8(), 9()) -> c(1(), 7())
     , +(9(), 0()) -> 9()
     , +(9(), 1()) -> c(1(), 0())
     , +(9(), 2()) -> c(1(), 1())
     , +(9(), 3()) -> c(1(), 2())
     , +(9(), 4()) -> c(1(), 3())
     , +(9(), 5()) -> c(1(), 4())
     , +(9(), 6()) -> c(1(), 5())
     , +(9(), 7()) -> c(1(), 6())
     , +(9(), 8()) -> c(1(), 7())
     , +(9(), 9()) -> c(1(), 8())
     , +(x, c(y, z)) -> c(y, +(x, z))
     , +(c(x, y), z) -> c(x, +(y, z))
     , c(0(), x) -> x
     , c(x, c(y, z)) -> c(+(x, y), z)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  +(0(), 0()) -> 0()
       , +(0(), 1()) -> 1()
       , +(0(), 2()) -> 2()
       , +(0(), 3()) -> 3()
       , +(0(), 4()) -> 4()
       , +(0(), 5()) -> 5()
       , +(0(), 6()) -> 6()
       , +(0(), 7()) -> 7()
       , +(0(), 8()) -> 8()
       , +(0(), 9()) -> 9()
       , +(1(), 0()) -> 1()
       , +(1(), 1()) -> 2()
       , +(1(), 2()) -> 3()
       , +(1(), 3()) -> 4()
       , +(1(), 4()) -> 5()
       , +(1(), 5()) -> 6()
       , +(1(), 6()) -> 7()
       , +(1(), 7()) -> 8()
       , +(1(), 8()) -> 9()
       , +(1(), 9()) -> c(1(), 0())
       , +(2(), 0()) -> 2()
       , +(2(), 1()) -> 3()
       , +(2(), 2()) -> 4()
       , +(2(), 3()) -> 5()
       , +(2(), 4()) -> 6()
       , +(2(), 5()) -> 7()
       , +(2(), 6()) -> 8()
       , +(2(), 7()) -> 9()
       , +(2(), 8()) -> c(1(), 0())
       , +(2(), 9()) -> c(1(), 1())
       , +(3(), 0()) -> 3()
       , +(3(), 1()) -> 4()
       , +(3(), 2()) -> 5()
       , +(3(), 3()) -> 6()
       , +(3(), 4()) -> 7()
       , +(3(), 5()) -> 8()
       , +(3(), 6()) -> 9()
       , +(3(), 7()) -> c(1(), 0())
       , +(3(), 8()) -> c(1(), 1())
       , +(3(), 9()) -> c(1(), 2())
       , +(4(), 0()) -> 4()
       , +(4(), 1()) -> 5()
       , +(4(), 2()) -> 6()
       , +(4(), 3()) -> 7()
       , +(4(), 4()) -> 8()
       , +(4(), 5()) -> 9()
       , +(4(), 6()) -> c(1(), 0())
       , +(4(), 7()) -> c(1(), 1())
       , +(4(), 8()) -> c(1(), 2())
       , +(4(), 9()) -> c(1(), 3())
       , +(5(), 0()) -> 5()
       , +(5(), 1()) -> 6()
       , +(5(), 2()) -> 7()
       , +(5(), 3()) -> 8()
       , +(5(), 4()) -> 9()
       , +(5(), 5()) -> c(1(), 0())
       , +(5(), 6()) -> c(1(), 1())
       , +(5(), 7()) -> c(1(), 2())
       , +(5(), 8()) -> c(1(), 3())
       , +(5(), 9()) -> c(1(), 4())
       , +(6(), 0()) -> 6()
       , +(6(), 1()) -> 7()
       , +(6(), 2()) -> 8()
       , +(6(), 3()) -> 9()
       , +(6(), 4()) -> c(1(), 0())
       , +(6(), 5()) -> c(1(), 1())
       , +(6(), 6()) -> c(1(), 2())
       , +(6(), 7()) -> c(1(), 3())
       , +(6(), 8()) -> c(1(), 4())
       , +(6(), 9()) -> c(1(), 5())
       , +(7(), 0()) -> 7()
       , +(7(), 1()) -> 8()
       , +(7(), 2()) -> 9()
       , +(7(), 3()) -> c(1(), 0())
       , +(7(), 4()) -> c(1(), 1())
       , +(7(), 5()) -> c(1(), 2())
       , +(7(), 6()) -> c(1(), 3())
       , +(7(), 7()) -> c(1(), 4())
       , +(7(), 8()) -> c(1(), 5())
       , +(7(), 9()) -> c(1(), 6())
       , +(8(), 0()) -> 8()
       , +(8(), 1()) -> 9()
       , +(8(), 2()) -> c(1(), 0())
       , +(8(), 3()) -> c(1(), 1())
       , +(8(), 4()) -> c(1(), 2())
       , +(8(), 5()) -> c(1(), 3())
       , +(8(), 6()) -> c(1(), 4())
       , +(8(), 7()) -> c(1(), 5())
       , +(8(), 8()) -> c(1(), 6())
       , +(8(), 9()) -> c(1(), 7())
       , +(9(), 0()) -> 9()
       , +(9(), 1()) -> c(1(), 0())
       , +(9(), 2()) -> c(1(), 1())
       , +(9(), 3()) -> c(1(), 2())
       , +(9(), 4()) -> c(1(), 3())
       , +(9(), 5()) -> c(1(), 4())
       , +(9(), 6()) -> c(1(), 5())
       , +(9(), 7()) -> c(1(), 6())
       , +(9(), 8()) -> c(1(), 7())
       , +(9(), 9()) -> c(1(), 8())
       , +(x, c(y, z)) -> c(y, +(x, z))
       , +(c(x, y), z) -> c(x, +(y, z))
       , c(0(), x) -> x
       , c(x, c(y, z)) -> c(+(x, y), z)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  +(0(), 0()) -> 0()
       , +(0(), 1()) -> 1()
       , +(0(), 2()) -> 2()
       , +(0(), 3()) -> 3()
       , +(0(), 4()) -> 4()
       , +(0(), 5()) -> 5()
       , +(0(), 6()) -> 6()
       , +(0(), 7()) -> 7()
       , +(0(), 8()) -> 8()
       , +(0(), 9()) -> 9()
       , +(1(), 0()) -> 1()
       , +(1(), 1()) -> 2()
       , +(1(), 2()) -> 3()
       , +(1(), 3()) -> 4()
       , +(1(), 4()) -> 5()
       , +(1(), 5()) -> 6()
       , +(1(), 6()) -> 7()
       , +(1(), 7()) -> 8()
       , +(1(), 8()) -> 9()
       , +(2(), 0()) -> 2()
       , +(2(), 1()) -> 3()
       , +(2(), 2()) -> 4()
       , +(2(), 3()) -> 5()
       , +(2(), 4()) -> 6()
       , +(2(), 5()) -> 7()
       , +(2(), 6()) -> 8()
       , +(2(), 7()) -> 9()
       , +(3(), 0()) -> 3()
       , +(3(), 1()) -> 4()
       , +(3(), 2()) -> 5()
       , +(3(), 3()) -> 6()
       , +(3(), 4()) -> 7()
       , +(3(), 5()) -> 8()
       , +(3(), 6()) -> 9()
       , +(4(), 0()) -> 4()
       , +(4(), 1()) -> 5()
       , +(4(), 2()) -> 6()
       , +(4(), 3()) -> 7()
       , +(4(), 4()) -> 8()
       , +(4(), 5()) -> 9()
       , +(5(), 0()) -> 5()
       , +(5(), 1()) -> 6()
       , +(5(), 2()) -> 7()
       , +(5(), 3()) -> 8()
       , +(5(), 4()) -> 9()
       , +(6(), 0()) -> 6()
       , +(6(), 1()) -> 7()
       , +(6(), 2()) -> 8()
       , +(6(), 3()) -> 9()
       , +(7(), 0()) -> 7()
       , +(7(), 1()) -> 8()
       , +(7(), 2()) -> 9()
       , +(8(), 0()) -> 8()
       , +(8(), 1()) -> 9()
       , +(9(), 0()) -> 9()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(+) = {}, Uargs(c) = {1, 2}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                   [0 1]      [0 0]      [1]
       0() = [0]
             [0]
       1() = [0]
             [0]
       2() = [0]
             [0]
       3() = [0]
             [0]
       4() = [0]
             [0]
       5() = [0]
             [0]
       6() = [0]
             [0]
       7() = [0]
             [0]
       8() = [0]
             [1]
       9() = [0]
             [0]
       c(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                   [0 0]      [0 0]      [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  +(1(), 9()) -> c(1(), 0())
         , +(2(), 8()) -> c(1(), 0())
         , +(2(), 9()) -> c(1(), 1())
         , +(3(), 7()) -> c(1(), 0())
         , +(3(), 8()) -> c(1(), 1())
         , +(3(), 9()) -> c(1(), 2())
         , +(4(), 6()) -> c(1(), 0())
         , +(4(), 7()) -> c(1(), 1())
         , +(4(), 8()) -> c(1(), 2())
         , +(4(), 9()) -> c(1(), 3())
         , +(5(), 5()) -> c(1(), 0())
         , +(5(), 6()) -> c(1(), 1())
         , +(5(), 7()) -> c(1(), 2())
         , +(5(), 8()) -> c(1(), 3())
         , +(5(), 9()) -> c(1(), 4())
         , +(6(), 4()) -> c(1(), 0())
         , +(6(), 5()) -> c(1(), 1())
         , +(6(), 6()) -> c(1(), 2())
         , +(6(), 7()) -> c(1(), 3())
         , +(6(), 8()) -> c(1(), 4())
         , +(6(), 9()) -> c(1(), 5())
         , +(7(), 3()) -> c(1(), 0())
         , +(7(), 4()) -> c(1(), 1())
         , +(7(), 5()) -> c(1(), 2())
         , +(7(), 6()) -> c(1(), 3())
         , +(7(), 7()) -> c(1(), 4())
         , +(7(), 8()) -> c(1(), 5())
         , +(7(), 9()) -> c(1(), 6())
         , +(8(), 2()) -> c(1(), 0())
         , +(8(), 3()) -> c(1(), 1())
         , +(8(), 4()) -> c(1(), 2())
         , +(8(), 5()) -> c(1(), 3())
         , +(8(), 6()) -> c(1(), 4())
         , +(8(), 7()) -> c(1(), 5())
         , +(8(), 8()) -> c(1(), 6())
         , +(8(), 9()) -> c(1(), 7())
         , +(9(), 1()) -> c(1(), 0())
         , +(9(), 2()) -> c(1(), 1())
         , +(9(), 3()) -> c(1(), 2())
         , +(9(), 4()) -> c(1(), 3())
         , +(9(), 5()) -> c(1(), 4())
         , +(9(), 6()) -> c(1(), 5())
         , +(9(), 7()) -> c(1(), 6())
         , +(9(), 8()) -> c(1(), 7())
         , +(9(), 9()) -> c(1(), 8())
         , +(x, c(y, z)) -> c(y, +(x, z))
         , +(c(x, y), z) -> c(x, +(y, z))
         , c(0(), x) -> x
         , c(x, c(y, z)) -> c(+(x, y), z)}
      Weak Trs:
        {  +(0(), 0()) -> 0()
         , +(0(), 1()) -> 1()
         , +(0(), 2()) -> 2()
         , +(0(), 3()) -> 3()
         , +(0(), 4()) -> 4()
         , +(0(), 5()) -> 5()
         , +(0(), 6()) -> 6()
         , +(0(), 7()) -> 7()
         , +(0(), 8()) -> 8()
         , +(0(), 9()) -> 9()
         , +(1(), 0()) -> 1()
         , +(1(), 1()) -> 2()
         , +(1(), 2()) -> 3()
         , +(1(), 3()) -> 4()
         , +(1(), 4()) -> 5()
         , +(1(), 5()) -> 6()
         , +(1(), 6()) -> 7()
         , +(1(), 7()) -> 8()
         , +(1(), 8()) -> 9()
         , +(2(), 0()) -> 2()
         , +(2(), 1()) -> 3()
         , +(2(), 2()) -> 4()
         , +(2(), 3()) -> 5()
         , +(2(), 4()) -> 6()
         , +(2(), 5()) -> 7()
         , +(2(), 6()) -> 8()
         , +(2(), 7()) -> 9()
         , +(3(), 0()) -> 3()
         , +(3(), 1()) -> 4()
         , +(3(), 2()) -> 5()
         , +(3(), 3()) -> 6()
         , +(3(), 4()) -> 7()
         , +(3(), 5()) -> 8()
         , +(3(), 6()) -> 9()
         , +(4(), 0()) -> 4()
         , +(4(), 1()) -> 5()
         , +(4(), 2()) -> 6()
         , +(4(), 3()) -> 7()
         , +(4(), 4()) -> 8()
         , +(4(), 5()) -> 9()
         , +(5(), 0()) -> 5()
         , +(5(), 1()) -> 6()
         , +(5(), 2()) -> 7()
         , +(5(), 3()) -> 8()
         , +(5(), 4()) -> 9()
         , +(6(), 0()) -> 6()
         , +(6(), 1()) -> 7()
         , +(6(), 2()) -> 8()
         , +(6(), 3()) -> 9()
         , +(7(), 0()) -> 7()
         , +(7(), 1()) -> 8()
         , +(7(), 2()) -> 9()
         , +(8(), 0()) -> 8()
         , +(8(), 1()) -> 9()
         , +(9(), 0()) -> 9()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {c(0(), x) -> x}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(+) = {}, Uargs(c) = {1, 2}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
         0() = [0]
               [0]
         1() = [0]
               [0]
         2() = [0]
               [0]
         3() = [0]
               [0]
         4() = [0]
               [0]
         5() = [0]
               [0]
         6() = [0]
               [0]
         7() = [0]
               [0]
         8() = [0]
               [0]
         9() = [0]
               [0]
         c(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 1]      [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  +(1(), 9()) -> c(1(), 0())
           , +(2(), 8()) -> c(1(), 0())
           , +(2(), 9()) -> c(1(), 1())
           , +(3(), 7()) -> c(1(), 0())
           , +(3(), 8()) -> c(1(), 1())
           , +(3(), 9()) -> c(1(), 2())
           , +(4(), 6()) -> c(1(), 0())
           , +(4(), 7()) -> c(1(), 1())
           , +(4(), 8()) -> c(1(), 2())
           , +(4(), 9()) -> c(1(), 3())
           , +(5(), 5()) -> c(1(), 0())
           , +(5(), 6()) -> c(1(), 1())
           , +(5(), 7()) -> c(1(), 2())
           , +(5(), 8()) -> c(1(), 3())
           , +(5(), 9()) -> c(1(), 4())
           , +(6(), 4()) -> c(1(), 0())
           , +(6(), 5()) -> c(1(), 1())
           , +(6(), 6()) -> c(1(), 2())
           , +(6(), 7()) -> c(1(), 3())
           , +(6(), 8()) -> c(1(), 4())
           , +(6(), 9()) -> c(1(), 5())
           , +(7(), 3()) -> c(1(), 0())
           , +(7(), 4()) -> c(1(), 1())
           , +(7(), 5()) -> c(1(), 2())
           , +(7(), 6()) -> c(1(), 3())
           , +(7(), 7()) -> c(1(), 4())
           , +(7(), 8()) -> c(1(), 5())
           , +(7(), 9()) -> c(1(), 6())
           , +(8(), 2()) -> c(1(), 0())
           , +(8(), 3()) -> c(1(), 1())
           , +(8(), 4()) -> c(1(), 2())
           , +(8(), 5()) -> c(1(), 3())
           , +(8(), 6()) -> c(1(), 4())
           , +(8(), 7()) -> c(1(), 5())
           , +(8(), 8()) -> c(1(), 6())
           , +(8(), 9()) -> c(1(), 7())
           , +(9(), 1()) -> c(1(), 0())
           , +(9(), 2()) -> c(1(), 1())
           , +(9(), 3()) -> c(1(), 2())
           , +(9(), 4()) -> c(1(), 3())
           , +(9(), 5()) -> c(1(), 4())
           , +(9(), 6()) -> c(1(), 5())
           , +(9(), 7()) -> c(1(), 6())
           , +(9(), 8()) -> c(1(), 7())
           , +(9(), 9()) -> c(1(), 8())
           , +(x, c(y, z)) -> c(y, +(x, z))
           , +(c(x, y), z) -> c(x, +(y, z))
           , c(x, c(y, z)) -> c(+(x, y), z)}
        Weak Trs:
          {  c(0(), x) -> x
           , +(0(), 0()) -> 0()
           , +(0(), 1()) -> 1()
           , +(0(), 2()) -> 2()
           , +(0(), 3()) -> 3()
           , +(0(), 4()) -> 4()
           , +(0(), 5()) -> 5()
           , +(0(), 6()) -> 6()
           , +(0(), 7()) -> 7()
           , +(0(), 8()) -> 8()
           , +(0(), 9()) -> 9()
           , +(1(), 0()) -> 1()
           , +(1(), 1()) -> 2()
           , +(1(), 2()) -> 3()
           , +(1(), 3()) -> 4()
           , +(1(), 4()) -> 5()
           , +(1(), 5()) -> 6()
           , +(1(), 6()) -> 7()
           , +(1(), 7()) -> 8()
           , +(1(), 8()) -> 9()
           , +(2(), 0()) -> 2()
           , +(2(), 1()) -> 3()
           , +(2(), 2()) -> 4()
           , +(2(), 3()) -> 5()
           , +(2(), 4()) -> 6()
           , +(2(), 5()) -> 7()
           , +(2(), 6()) -> 8()
           , +(2(), 7()) -> 9()
           , +(3(), 0()) -> 3()
           , +(3(), 1()) -> 4()
           , +(3(), 2()) -> 5()
           , +(3(), 3()) -> 6()
           , +(3(), 4()) -> 7()
           , +(3(), 5()) -> 8()
           , +(3(), 6()) -> 9()
           , +(4(), 0()) -> 4()
           , +(4(), 1()) -> 5()
           , +(4(), 2()) -> 6()
           , +(4(), 3()) -> 7()
           , +(4(), 4()) -> 8()
           , +(4(), 5()) -> 9()
           , +(5(), 0()) -> 5()
           , +(5(), 1()) -> 6()
           , +(5(), 2()) -> 7()
           , +(5(), 3()) -> 8()
           , +(5(), 4()) -> 9()
           , +(6(), 0()) -> 6()
           , +(6(), 1()) -> 7()
           , +(6(), 2()) -> 8()
           , +(6(), 3()) -> 9()
           , +(7(), 0()) -> 7()
           , +(7(), 1()) -> 8()
           , +(7(), 2()) -> 9()
           , +(8(), 0()) -> 8()
           , +(8(), 1()) -> 9()
           , +(9(), 0()) -> 9()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {  +(3(), 7()) -> c(1(), 0())
           , +(5(), 7()) -> c(1(), 2())
           , +(7(), 3()) -> c(1(), 0())
           , +(7(), 5()) -> c(1(), 2())}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(+) = {}, Uargs(c) = {1, 2}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 1]      [0 1]      [0]
           0() = [2]
                 [0]
           1() = [3]
                 [2]
           2() = [0]
                 [3]
           3() = [3]
                 [2]
           4() = [1]
                 [2]
           5() = [1]
                 [3]
           6() = [1]
                 [0]
           7() = [2]
                 [1]
           8() = [0]
                 [0]
           9() = [1]
                 [0]
           c(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 1]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  +(1(), 9()) -> c(1(), 0())
             , +(2(), 8()) -> c(1(), 0())
             , +(2(), 9()) -> c(1(), 1())
             , +(3(), 8()) -> c(1(), 1())
             , +(3(), 9()) -> c(1(), 2())
             , +(4(), 6()) -> c(1(), 0())
             , +(4(), 7()) -> c(1(), 1())
             , +(4(), 8()) -> c(1(), 2())
             , +(4(), 9()) -> c(1(), 3())
             , +(5(), 5()) -> c(1(), 0())
             , +(5(), 6()) -> c(1(), 1())
             , +(5(), 8()) -> c(1(), 3())
             , +(5(), 9()) -> c(1(), 4())
             , +(6(), 4()) -> c(1(), 0())
             , +(6(), 5()) -> c(1(), 1())
             , +(6(), 6()) -> c(1(), 2())
             , +(6(), 7()) -> c(1(), 3())
             , +(6(), 8()) -> c(1(), 4())
             , +(6(), 9()) -> c(1(), 5())
             , +(7(), 4()) -> c(1(), 1())
             , +(7(), 6()) -> c(1(), 3())
             , +(7(), 7()) -> c(1(), 4())
             , +(7(), 8()) -> c(1(), 5())
             , +(7(), 9()) -> c(1(), 6())
             , +(8(), 2()) -> c(1(), 0())
             , +(8(), 3()) -> c(1(), 1())
             , +(8(), 4()) -> c(1(), 2())
             , +(8(), 5()) -> c(1(), 3())
             , +(8(), 6()) -> c(1(), 4())
             , +(8(), 7()) -> c(1(), 5())
             , +(8(), 8()) -> c(1(), 6())
             , +(8(), 9()) -> c(1(), 7())
             , +(9(), 1()) -> c(1(), 0())
             , +(9(), 2()) -> c(1(), 1())
             , +(9(), 3()) -> c(1(), 2())
             , +(9(), 4()) -> c(1(), 3())
             , +(9(), 5()) -> c(1(), 4())
             , +(9(), 6()) -> c(1(), 5())
             , +(9(), 7()) -> c(1(), 6())
             , +(9(), 8()) -> c(1(), 7())
             , +(9(), 9()) -> c(1(), 8())
             , +(x, c(y, z)) -> c(y, +(x, z))
             , +(c(x, y), z) -> c(x, +(y, z))
             , c(x, c(y, z)) -> c(+(x, y), z)}
          Weak Trs:
            {  +(3(), 7()) -> c(1(), 0())
             , +(5(), 7()) -> c(1(), 2())
             , +(7(), 3()) -> c(1(), 0())
             , +(7(), 5()) -> c(1(), 2())
             , c(0(), x) -> x
             , +(0(), 0()) -> 0()
             , +(0(), 1()) -> 1()
             , +(0(), 2()) -> 2()
             , +(0(), 3()) -> 3()
             , +(0(), 4()) -> 4()
             , +(0(), 5()) -> 5()
             , +(0(), 6()) -> 6()
             , +(0(), 7()) -> 7()
             , +(0(), 8()) -> 8()
             , +(0(), 9()) -> 9()
             , +(1(), 0()) -> 1()
             , +(1(), 1()) -> 2()
             , +(1(), 2()) -> 3()
             , +(1(), 3()) -> 4()
             , +(1(), 4()) -> 5()
             , +(1(), 5()) -> 6()
             , +(1(), 6()) -> 7()
             , +(1(), 7()) -> 8()
             , +(1(), 8()) -> 9()
             , +(2(), 0()) -> 2()
             , +(2(), 1()) -> 3()
             , +(2(), 2()) -> 4()
             , +(2(), 3()) -> 5()
             , +(2(), 4()) -> 6()
             , +(2(), 5()) -> 7()
             , +(2(), 6()) -> 8()
             , +(2(), 7()) -> 9()
             , +(3(), 0()) -> 3()
             , +(3(), 1()) -> 4()
             , +(3(), 2()) -> 5()
             , +(3(), 3()) -> 6()
             , +(3(), 4()) -> 7()
             , +(3(), 5()) -> 8()
             , +(3(), 6()) -> 9()
             , +(4(), 0()) -> 4()
             , +(4(), 1()) -> 5()
             , +(4(), 2()) -> 6()
             , +(4(), 3()) -> 7()
             , +(4(), 4()) -> 8()
             , +(4(), 5()) -> 9()
             , +(5(), 0()) -> 5()
             , +(5(), 1()) -> 6()
             , +(5(), 2()) -> 7()
             , +(5(), 3()) -> 8()
             , +(5(), 4()) -> 9()
             , +(6(), 0()) -> 6()
             , +(6(), 1()) -> 7()
             , +(6(), 2()) -> 8()
             , +(6(), 3()) -> 9()
             , +(7(), 0()) -> 7()
             , +(7(), 1()) -> 8()
             , +(7(), 2()) -> 9()
             , +(8(), 0()) -> 8()
             , +(8(), 1()) -> 9()
             , +(9(), 0()) -> 9()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  +(5(), 5()) -> c(1(), 0())
             , +(5(), 6()) -> c(1(), 1())
             , +(5(), 8()) -> c(1(), 3())
             , +(5(), 9()) -> c(1(), 4())
             , +(6(), 5()) -> c(1(), 1())
             , +(8(), 5()) -> c(1(), 3())
             , +(9(), 5()) -> c(1(), 4())}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(+) = {}, Uargs(c) = {1, 2}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 1]      [0 1]      [1]
             0() = [0]
                   [0]
             1() = [0]
                   [0]
             2() = [0]
                   [0]
             3() = [0]
                   [0]
             4() = [0]
                   [0]
             5() = [1]
                   [1]
             6() = [0]
                   [0]
             7() = [0]
                   [1]
             8() = [0]
                   [0]
             9() = [0]
                   [0]
             c(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 1]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  +(1(), 9()) -> c(1(), 0())
               , +(2(), 8()) -> c(1(), 0())
               , +(2(), 9()) -> c(1(), 1())
               , +(3(), 8()) -> c(1(), 1())
               , +(3(), 9()) -> c(1(), 2())
               , +(4(), 6()) -> c(1(), 0())
               , +(4(), 7()) -> c(1(), 1())
               , +(4(), 8()) -> c(1(), 2())
               , +(4(), 9()) -> c(1(), 3())
               , +(6(), 4()) -> c(1(), 0())
               , +(6(), 6()) -> c(1(), 2())
               , +(6(), 7()) -> c(1(), 3())
               , +(6(), 8()) -> c(1(), 4())
               , +(6(), 9()) -> c(1(), 5())
               , +(7(), 4()) -> c(1(), 1())
               , +(7(), 6()) -> c(1(), 3())
               , +(7(), 7()) -> c(1(), 4())
               , +(7(), 8()) -> c(1(), 5())
               , +(7(), 9()) -> c(1(), 6())
               , +(8(), 2()) -> c(1(), 0())
               , +(8(), 3()) -> c(1(), 1())
               , +(8(), 4()) -> c(1(), 2())
               , +(8(), 6()) -> c(1(), 4())
               , +(8(), 7()) -> c(1(), 5())
               , +(8(), 8()) -> c(1(), 6())
               , +(8(), 9()) -> c(1(), 7())
               , +(9(), 1()) -> c(1(), 0())
               , +(9(), 2()) -> c(1(), 1())
               , +(9(), 3()) -> c(1(), 2())
               , +(9(), 4()) -> c(1(), 3())
               , +(9(), 6()) -> c(1(), 5())
               , +(9(), 7()) -> c(1(), 6())
               , +(9(), 8()) -> c(1(), 7())
               , +(9(), 9()) -> c(1(), 8())
               , +(x, c(y, z)) -> c(y, +(x, z))
               , +(c(x, y), z) -> c(x, +(y, z))
               , c(x, c(y, z)) -> c(+(x, y), z)}
            Weak Trs:
              {  +(5(), 5()) -> c(1(), 0())
               , +(5(), 6()) -> c(1(), 1())
               , +(5(), 8()) -> c(1(), 3())
               , +(5(), 9()) -> c(1(), 4())
               , +(6(), 5()) -> c(1(), 1())
               , +(8(), 5()) -> c(1(), 3())
               , +(9(), 5()) -> c(1(), 4())
               , +(3(), 7()) -> c(1(), 0())
               , +(5(), 7()) -> c(1(), 2())
               , +(7(), 3()) -> c(1(), 0())
               , +(7(), 5()) -> c(1(), 2())
               , c(0(), x) -> x
               , +(0(), 0()) -> 0()
               , +(0(), 1()) -> 1()
               , +(0(), 2()) -> 2()
               , +(0(), 3()) -> 3()
               , +(0(), 4()) -> 4()
               , +(0(), 5()) -> 5()
               , +(0(), 6()) -> 6()
               , +(0(), 7()) -> 7()
               , +(0(), 8()) -> 8()
               , +(0(), 9()) -> 9()
               , +(1(), 0()) -> 1()
               , +(1(), 1()) -> 2()
               , +(1(), 2()) -> 3()
               , +(1(), 3()) -> 4()
               , +(1(), 4()) -> 5()
               , +(1(), 5()) -> 6()
               , +(1(), 6()) -> 7()
               , +(1(), 7()) -> 8()
               , +(1(), 8()) -> 9()
               , +(2(), 0()) -> 2()
               , +(2(), 1()) -> 3()
               , +(2(), 2()) -> 4()
               , +(2(), 3()) -> 5()
               , +(2(), 4()) -> 6()
               , +(2(), 5()) -> 7()
               , +(2(), 6()) -> 8()
               , +(2(), 7()) -> 9()
               , +(3(), 0()) -> 3()
               , +(3(), 1()) -> 4()
               , +(3(), 2()) -> 5()
               , +(3(), 3()) -> 6()
               , +(3(), 4()) -> 7()
               , +(3(), 5()) -> 8()
               , +(3(), 6()) -> 9()
               , +(4(), 0()) -> 4()
               , +(4(), 1()) -> 5()
               , +(4(), 2()) -> 6()
               , +(4(), 3()) -> 7()
               , +(4(), 4()) -> 8()
               , +(4(), 5()) -> 9()
               , +(5(), 0()) -> 5()
               , +(5(), 1()) -> 6()
               , +(5(), 2()) -> 7()
               , +(5(), 3()) -> 8()
               , +(5(), 4()) -> 9()
               , +(6(), 0()) -> 6()
               , +(6(), 1()) -> 7()
               , +(6(), 2()) -> 8()
               , +(6(), 3()) -> 9()
               , +(7(), 0()) -> 7()
               , +(7(), 1()) -> 8()
               , +(7(), 2()) -> 9()
               , +(8(), 0()) -> 8()
               , +(8(), 1()) -> 9()
               , +(9(), 0()) -> 9()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component:
              {  +(4(), 7()) -> c(1(), 1())
               , +(6(), 7()) -> c(1(), 3())
               , +(7(), 4()) -> c(1(), 1())
               , +(7(), 6()) -> c(1(), 3())
               , +(7(), 7()) -> c(1(), 4())
               , +(7(), 9()) -> c(1(), 6())
               , +(8(), 7()) -> c(1(), 5())
               , +(9(), 7()) -> c(1(), 6())}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(+) = {}, Uargs(c) = {1, 2}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 1]      [1]
               0() = [0]
                     [0]
               1() = [0]
                     [0]
               2() = [0]
                     [1]
               3() = [0]
                     [0]
               4() = [0]
                     [0]
               5() = [0]
                     [1]
               6() = [0]
                     [0]
               7() = [1]
                     [1]
               8() = [0]
                     [0]
               9() = [0]
                     [0]
               c(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 1]      [1]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  +(1(), 9()) -> c(1(), 0())
                 , +(2(), 8()) -> c(1(), 0())
                 , +(2(), 9()) -> c(1(), 1())
                 , +(3(), 8()) -> c(1(), 1())
                 , +(3(), 9()) -> c(1(), 2())
                 , +(4(), 6()) -> c(1(), 0())
                 , +(4(), 8()) -> c(1(), 2())
                 , +(4(), 9()) -> c(1(), 3())
                 , +(6(), 4()) -> c(1(), 0())
                 , +(6(), 6()) -> c(1(), 2())
                 , +(6(), 8()) -> c(1(), 4())
                 , +(6(), 9()) -> c(1(), 5())
                 , +(7(), 8()) -> c(1(), 5())
                 , +(8(), 2()) -> c(1(), 0())
                 , +(8(), 3()) -> c(1(), 1())
                 , +(8(), 4()) -> c(1(), 2())
                 , +(8(), 6()) -> c(1(), 4())
                 , +(8(), 8()) -> c(1(), 6())
                 , +(8(), 9()) -> c(1(), 7())
                 , +(9(), 1()) -> c(1(), 0())
                 , +(9(), 2()) -> c(1(), 1())
                 , +(9(), 3()) -> c(1(), 2())
                 , +(9(), 4()) -> c(1(), 3())
                 , +(9(), 6()) -> c(1(), 5())
                 , +(9(), 8()) -> c(1(), 7())
                 , +(9(), 9()) -> c(1(), 8())
                 , +(x, c(y, z)) -> c(y, +(x, z))
                 , +(c(x, y), z) -> c(x, +(y, z))
                 , c(x, c(y, z)) -> c(+(x, y), z)}
              Weak Trs:
                {  +(4(), 7()) -> c(1(), 1())
                 , +(6(), 7()) -> c(1(), 3())
                 , +(7(), 4()) -> c(1(), 1())
                 , +(7(), 6()) -> c(1(), 3())
                 , +(7(), 7()) -> c(1(), 4())
                 , +(7(), 9()) -> c(1(), 6())
                 , +(8(), 7()) -> c(1(), 5())
                 , +(9(), 7()) -> c(1(), 6())
                 , +(5(), 5()) -> c(1(), 0())
                 , +(5(), 6()) -> c(1(), 1())
                 , +(5(), 8()) -> c(1(), 3())
                 , +(5(), 9()) -> c(1(), 4())
                 , +(6(), 5()) -> c(1(), 1())
                 , +(8(), 5()) -> c(1(), 3())
                 , +(9(), 5()) -> c(1(), 4())
                 , +(3(), 7()) -> c(1(), 0())
                 , +(5(), 7()) -> c(1(), 2())
                 , +(7(), 3()) -> c(1(), 0())
                 , +(7(), 5()) -> c(1(), 2())
                 , c(0(), x) -> x
                 , +(0(), 0()) -> 0()
                 , +(0(), 1()) -> 1()
                 , +(0(), 2()) -> 2()
                 , +(0(), 3()) -> 3()
                 , +(0(), 4()) -> 4()
                 , +(0(), 5()) -> 5()
                 , +(0(), 6()) -> 6()
                 , +(0(), 7()) -> 7()
                 , +(0(), 8()) -> 8()
                 , +(0(), 9()) -> 9()
                 , +(1(), 0()) -> 1()
                 , +(1(), 1()) -> 2()
                 , +(1(), 2()) -> 3()
                 , +(1(), 3()) -> 4()
                 , +(1(), 4()) -> 5()
                 , +(1(), 5()) -> 6()
                 , +(1(), 6()) -> 7()
                 , +(1(), 7()) -> 8()
                 , +(1(), 8()) -> 9()
                 , +(2(), 0()) -> 2()
                 , +(2(), 1()) -> 3()
                 , +(2(), 2()) -> 4()
                 , +(2(), 3()) -> 5()
                 , +(2(), 4()) -> 6()
                 , +(2(), 5()) -> 7()
                 , +(2(), 6()) -> 8()
                 , +(2(), 7()) -> 9()
                 , +(3(), 0()) -> 3()
                 , +(3(), 1()) -> 4()
                 , +(3(), 2()) -> 5()
                 , +(3(), 3()) -> 6()
                 , +(3(), 4()) -> 7()
                 , +(3(), 5()) -> 8()
                 , +(3(), 6()) -> 9()
                 , +(4(), 0()) -> 4()
                 , +(4(), 1()) -> 5()
                 , +(4(), 2()) -> 6()
                 , +(4(), 3()) -> 7()
                 , +(4(), 4()) -> 8()
                 , +(4(), 5()) -> 9()
                 , +(5(), 0()) -> 5()
                 , +(5(), 1()) -> 6()
                 , +(5(), 2()) -> 7()
                 , +(5(), 3()) -> 8()
                 , +(5(), 4()) -> 9()
                 , +(6(), 0()) -> 6()
                 , +(6(), 1()) -> 7()
                 , +(6(), 2()) -> 8()
                 , +(6(), 3()) -> 9()
                 , +(7(), 0()) -> 7()
                 , +(7(), 1()) -> 8()
                 , +(7(), 2()) -> 9()
                 , +(8(), 0()) -> 8()
                 , +(8(), 1()) -> 9()
                 , +(9(), 0()) -> 9()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {+(7(), 8()) -> c(1(), 5())}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(+) = {}, Uargs(c) = {1, 2}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
                 0() = [0]
                       [0]
                 1() = [0]
                       [0]
                 2() = [0]
                       [0]
                 3() = [0]
                       [0]
                 4() = [0]
                       [0]
                 5() = [0]
                       [0]
                 6() = [0]
                       [0]
                 7() = [1]
                       [0]
                 8() = [0]
                       [0]
                 9() = [0]
                       [0]
                 c(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 1]      [1]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  +(1(), 9()) -> c(1(), 0())
                   , +(2(), 8()) -> c(1(), 0())
                   , +(2(), 9()) -> c(1(), 1())
                   , +(3(), 8()) -> c(1(), 1())
                   , +(3(), 9()) -> c(1(), 2())
                   , +(4(), 6()) -> c(1(), 0())
                   , +(4(), 8()) -> c(1(), 2())
                   , +(4(), 9()) -> c(1(), 3())
                   , +(6(), 4()) -> c(1(), 0())
                   , +(6(), 6()) -> c(1(), 2())
                   , +(6(), 8()) -> c(1(), 4())
                   , +(6(), 9()) -> c(1(), 5())
                   , +(8(), 2()) -> c(1(), 0())
                   , +(8(), 3()) -> c(1(), 1())
                   , +(8(), 4()) -> c(1(), 2())
                   , +(8(), 6()) -> c(1(), 4())
                   , +(8(), 8()) -> c(1(), 6())
                   , +(8(), 9()) -> c(1(), 7())
                   , +(9(), 1()) -> c(1(), 0())
                   , +(9(), 2()) -> c(1(), 1())
                   , +(9(), 3()) -> c(1(), 2())
                   , +(9(), 4()) -> c(1(), 3())
                   , +(9(), 6()) -> c(1(), 5())
                   , +(9(), 8()) -> c(1(), 7())
                   , +(9(), 9()) -> c(1(), 8())
                   , +(x, c(y, z)) -> c(y, +(x, z))
                   , +(c(x, y), z) -> c(x, +(y, z))
                   , c(x, c(y, z)) -> c(+(x, y), z)}
                Weak Trs:
                  {  +(7(), 8()) -> c(1(), 5())
                   , +(4(), 7()) -> c(1(), 1())
                   , +(6(), 7()) -> c(1(), 3())
                   , +(7(), 4()) -> c(1(), 1())
                   , +(7(), 6()) -> c(1(), 3())
                   , +(7(), 7()) -> c(1(), 4())
                   , +(7(), 9()) -> c(1(), 6())
                   , +(8(), 7()) -> c(1(), 5())
                   , +(9(), 7()) -> c(1(), 6())
                   , +(5(), 5()) -> c(1(), 0())
                   , +(5(), 6()) -> c(1(), 1())
                   , +(5(), 8()) -> c(1(), 3())
                   , +(5(), 9()) -> c(1(), 4())
                   , +(6(), 5()) -> c(1(), 1())
                   , +(8(), 5()) -> c(1(), 3())
                   , +(9(), 5()) -> c(1(), 4())
                   , +(3(), 7()) -> c(1(), 0())
                   , +(5(), 7()) -> c(1(), 2())
                   , +(7(), 3()) -> c(1(), 0())
                   , +(7(), 5()) -> c(1(), 2())
                   , c(0(), x) -> x
                   , +(0(), 0()) -> 0()
                   , +(0(), 1()) -> 1()
                   , +(0(), 2()) -> 2()
                   , +(0(), 3()) -> 3()
                   , +(0(), 4()) -> 4()
                   , +(0(), 5()) -> 5()
                   , +(0(), 6()) -> 6()
                   , +(0(), 7()) -> 7()
                   , +(0(), 8()) -> 8()
                   , +(0(), 9()) -> 9()
                   , +(1(), 0()) -> 1()
                   , +(1(), 1()) -> 2()
                   , +(1(), 2()) -> 3()
                   , +(1(), 3()) -> 4()
                   , +(1(), 4()) -> 5()
                   , +(1(), 5()) -> 6()
                   , +(1(), 6()) -> 7()
                   , +(1(), 7()) -> 8()
                   , +(1(), 8()) -> 9()
                   , +(2(), 0()) -> 2()
                   , +(2(), 1()) -> 3()
                   , +(2(), 2()) -> 4()
                   , +(2(), 3()) -> 5()
                   , +(2(), 4()) -> 6()
                   , +(2(), 5()) -> 7()
                   , +(2(), 6()) -> 8()
                   , +(2(), 7()) -> 9()
                   , +(3(), 0()) -> 3()
                   , +(3(), 1()) -> 4()
                   , +(3(), 2()) -> 5()
                   , +(3(), 3()) -> 6()
                   , +(3(), 4()) -> 7()
                   , +(3(), 5()) -> 8()
                   , +(3(), 6()) -> 9()
                   , +(4(), 0()) -> 4()
                   , +(4(), 1()) -> 5()
                   , +(4(), 2()) -> 6()
                   , +(4(), 3()) -> 7()
                   , +(4(), 4()) -> 8()
                   , +(4(), 5()) -> 9()
                   , +(5(), 0()) -> 5()
                   , +(5(), 1()) -> 6()
                   , +(5(), 2()) -> 7()
                   , +(5(), 3()) -> 8()
                   , +(5(), 4()) -> 9()
                   , +(6(), 0()) -> 6()
                   , +(6(), 1()) -> 7()
                   , +(6(), 2()) -> 8()
                   , +(6(), 3()) -> 9()
                   , +(7(), 0()) -> 7()
                   , +(7(), 1()) -> 8()
                   , +(7(), 2()) -> 9()
                   , +(8(), 0()) -> 8()
                   , +(8(), 1()) -> 9()
                   , +(9(), 0()) -> 9()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component:
                  {  +(1(), 9()) -> c(1(), 0())
                   , +(2(), 8()) -> c(1(), 0())
                   , +(2(), 9()) -> c(1(), 1())
                   , +(3(), 8()) -> c(1(), 1())
                   , +(3(), 9()) -> c(1(), 2())
                   , +(4(), 6()) -> c(1(), 0())
                   , +(4(), 8()) -> c(1(), 2())
                   , +(4(), 9()) -> c(1(), 3())
                   , +(6(), 4()) -> c(1(), 0())
                   , +(6(), 6()) -> c(1(), 2())
                   , +(6(), 8()) -> c(1(), 4())
                   , +(6(), 9()) -> c(1(), 5())
                   , +(8(), 2()) -> c(1(), 0())
                   , +(8(), 3()) -> c(1(), 1())
                   , +(8(), 4()) -> c(1(), 2())
                   , +(8(), 6()) -> c(1(), 4())
                   , +(8(), 8()) -> c(1(), 6())
                   , +(8(), 9()) -> c(1(), 7())
                   , +(9(), 1()) -> c(1(), 0())
                   , +(9(), 2()) -> c(1(), 1())
                   , +(9(), 3()) -> c(1(), 2())
                   , +(9(), 4()) -> c(1(), 3())
                   , +(9(), 6()) -> c(1(), 5())
                   , +(9(), 8()) -> c(1(), 7())}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(+) = {}, Uargs(c) = {1, 2}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   +(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                               [0 1]      [0 1]      [1]
                   0() = [1]
                         [0]
                   1() = [0]
                         [0]
                   2() = [2]
                         [1]
                   3() = [2]
                         [2]
                   4() = [0]
                         [2]
                   5() = [0]
                         [2]
                   6() = [0]
                         [2]
                   7() = [0]
                         [2]
                   8() = [1]
                         [3]
                   9() = [0]
                         [0]
                   c(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  +(9(), 9()) -> c(1(), 8())
                     , +(x, c(y, z)) -> c(y, +(x, z))
                     , +(c(x, y), z) -> c(x, +(y, z))
                     , c(x, c(y, z)) -> c(+(x, y), z)}
                  Weak Trs:
                    {  +(1(), 9()) -> c(1(), 0())
                     , +(2(), 8()) -> c(1(), 0())
                     , +(2(), 9()) -> c(1(), 1())
                     , +(3(), 8()) -> c(1(), 1())
                     , +(3(), 9()) -> c(1(), 2())
                     , +(4(), 6()) -> c(1(), 0())
                     , +(4(), 8()) -> c(1(), 2())
                     , +(4(), 9()) -> c(1(), 3())
                     , +(6(), 4()) -> c(1(), 0())
                     , +(6(), 6()) -> c(1(), 2())
                     , +(6(), 8()) -> c(1(), 4())
                     , +(6(), 9()) -> c(1(), 5())
                     , +(8(), 2()) -> c(1(), 0())
                     , +(8(), 3()) -> c(1(), 1())
                     , +(8(), 4()) -> c(1(), 2())
                     , +(8(), 6()) -> c(1(), 4())
                     , +(8(), 8()) -> c(1(), 6())
                     , +(8(), 9()) -> c(1(), 7())
                     , +(9(), 1()) -> c(1(), 0())
                     , +(9(), 2()) -> c(1(), 1())
                     , +(9(), 3()) -> c(1(), 2())
                     , +(9(), 4()) -> c(1(), 3())
                     , +(9(), 6()) -> c(1(), 5())
                     , +(9(), 8()) -> c(1(), 7())
                     , +(7(), 8()) -> c(1(), 5())
                     , +(4(), 7()) -> c(1(), 1())
                     , +(6(), 7()) -> c(1(), 3())
                     , +(7(), 4()) -> c(1(), 1())
                     , +(7(), 6()) -> c(1(), 3())
                     , +(7(), 7()) -> c(1(), 4())
                     , +(7(), 9()) -> c(1(), 6())
                     , +(8(), 7()) -> c(1(), 5())
                     , +(9(), 7()) -> c(1(), 6())
                     , +(5(), 5()) -> c(1(), 0())
                     , +(5(), 6()) -> c(1(), 1())
                     , +(5(), 8()) -> c(1(), 3())
                     , +(5(), 9()) -> c(1(), 4())
                     , +(6(), 5()) -> c(1(), 1())
                     , +(8(), 5()) -> c(1(), 3())
                     , +(9(), 5()) -> c(1(), 4())
                     , +(3(), 7()) -> c(1(), 0())
                     , +(5(), 7()) -> c(1(), 2())
                     , +(7(), 3()) -> c(1(), 0())
                     , +(7(), 5()) -> c(1(), 2())
                     , c(0(), x) -> x
                     , +(0(), 0()) -> 0()
                     , +(0(), 1()) -> 1()
                     , +(0(), 2()) -> 2()
                     , +(0(), 3()) -> 3()
                     , +(0(), 4()) -> 4()
                     , +(0(), 5()) -> 5()
                     , +(0(), 6()) -> 6()
                     , +(0(), 7()) -> 7()
                     , +(0(), 8()) -> 8()
                     , +(0(), 9()) -> 9()
                     , +(1(), 0()) -> 1()
                     , +(1(), 1()) -> 2()
                     , +(1(), 2()) -> 3()
                     , +(1(), 3()) -> 4()
                     , +(1(), 4()) -> 5()
                     , +(1(), 5()) -> 6()
                     , +(1(), 6()) -> 7()
                     , +(1(), 7()) -> 8()
                     , +(1(), 8()) -> 9()
                     , +(2(), 0()) -> 2()
                     , +(2(), 1()) -> 3()
                     , +(2(), 2()) -> 4()
                     , +(2(), 3()) -> 5()
                     , +(2(), 4()) -> 6()
                     , +(2(), 5()) -> 7()
                     , +(2(), 6()) -> 8()
                     , +(2(), 7()) -> 9()
                     , +(3(), 0()) -> 3()
                     , +(3(), 1()) -> 4()
                     , +(3(), 2()) -> 5()
                     , +(3(), 3()) -> 6()
                     , +(3(), 4()) -> 7()
                     , +(3(), 5()) -> 8()
                     , +(3(), 6()) -> 9()
                     , +(4(), 0()) -> 4()
                     , +(4(), 1()) -> 5()
                     , +(4(), 2()) -> 6()
                     , +(4(), 3()) -> 7()
                     , +(4(), 4()) -> 8()
                     , +(4(), 5()) -> 9()
                     , +(5(), 0()) -> 5()
                     , +(5(), 1()) -> 6()
                     , +(5(), 2()) -> 7()
                     , +(5(), 3()) -> 8()
                     , +(5(), 4()) -> 9()
                     , +(6(), 0()) -> 6()
                     , +(6(), 1()) -> 7()
                     , +(6(), 2()) -> 8()
                     , +(6(), 3()) -> 9()
                     , +(7(), 0()) -> 7()
                     , +(7(), 1()) -> 8()
                     , +(7(), 2()) -> 9()
                     , +(8(), 0()) -> 8()
                     , +(8(), 1()) -> 9()
                     , +(9(), 0()) -> 9()}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {+(9(), 9()) -> c(1(), 8())}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(+) = {}, Uargs(c) = {1, 2}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                 [0 1]      [0 1]      [1]
                     0() = [0]
                           [0]
                     1() = [0]
                           [3]
                     2() = [0]
                           [2]
                     3() = [0]
                           [1]
                     4() = [1]
                           [0]
                     5() = [1]
                           [2]
                     6() = [1]
                           [1]
                     7() = [2]
                           [2]
                     8() = [2]
                           [1]
                     9() = [2]
                           [0]
                     c(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                 [0 0]      [0 1]      [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  +(x, c(y, z)) -> c(y, +(x, z))
                       , +(c(x, y), z) -> c(x, +(y, z))
                       , c(x, c(y, z)) -> c(+(x, y), z)}
                    Weak Trs:
                      {  +(9(), 9()) -> c(1(), 8())
                       , +(1(), 9()) -> c(1(), 0())
                       , +(2(), 8()) -> c(1(), 0())
                       , +(2(), 9()) -> c(1(), 1())
                       , +(3(), 8()) -> c(1(), 1())
                       , +(3(), 9()) -> c(1(), 2())
                       , +(4(), 6()) -> c(1(), 0())
                       , +(4(), 8()) -> c(1(), 2())
                       , +(4(), 9()) -> c(1(), 3())
                       , +(6(), 4()) -> c(1(), 0())
                       , +(6(), 6()) -> c(1(), 2())
                       , +(6(), 8()) -> c(1(), 4())
                       , +(6(), 9()) -> c(1(), 5())
                       , +(8(), 2()) -> c(1(), 0())
                       , +(8(), 3()) -> c(1(), 1())
                       , +(8(), 4()) -> c(1(), 2())
                       , +(8(), 6()) -> c(1(), 4())
                       , +(8(), 8()) -> c(1(), 6())
                       , +(8(), 9()) -> c(1(), 7())
                       , +(9(), 1()) -> c(1(), 0())
                       , +(9(), 2()) -> c(1(), 1())
                       , +(9(), 3()) -> c(1(), 2())
                       , +(9(), 4()) -> c(1(), 3())
                       , +(9(), 6()) -> c(1(), 5())
                       , +(9(), 8()) -> c(1(), 7())
                       , +(7(), 8()) -> c(1(), 5())
                       , +(4(), 7()) -> c(1(), 1())
                       , +(6(), 7()) -> c(1(), 3())
                       , +(7(), 4()) -> c(1(), 1())
                       , +(7(), 6()) -> c(1(), 3())
                       , +(7(), 7()) -> c(1(), 4())
                       , +(7(), 9()) -> c(1(), 6())
                       , +(8(), 7()) -> c(1(), 5())
                       , +(9(), 7()) -> c(1(), 6())
                       , +(5(), 5()) -> c(1(), 0())
                       , +(5(), 6()) -> c(1(), 1())
                       , +(5(), 8()) -> c(1(), 3())
                       , +(5(), 9()) -> c(1(), 4())
                       , +(6(), 5()) -> c(1(), 1())
                       , +(8(), 5()) -> c(1(), 3())
                       , +(9(), 5()) -> c(1(), 4())
                       , +(3(), 7()) -> c(1(), 0())
                       , +(5(), 7()) -> c(1(), 2())
                       , +(7(), 3()) -> c(1(), 0())
                       , +(7(), 5()) -> c(1(), 2())
                       , c(0(), x) -> x
                       , +(0(), 0()) -> 0()
                       , +(0(), 1()) -> 1()
                       , +(0(), 2()) -> 2()
                       , +(0(), 3()) -> 3()
                       , +(0(), 4()) -> 4()
                       , +(0(), 5()) -> 5()
                       , +(0(), 6()) -> 6()
                       , +(0(), 7()) -> 7()
                       , +(0(), 8()) -> 8()
                       , +(0(), 9()) -> 9()
                       , +(1(), 0()) -> 1()
                       , +(1(), 1()) -> 2()
                       , +(1(), 2()) -> 3()
                       , +(1(), 3()) -> 4()
                       , +(1(), 4()) -> 5()
                       , +(1(), 5()) -> 6()
                       , +(1(), 6()) -> 7()
                       , +(1(), 7()) -> 8()
                       , +(1(), 8()) -> 9()
                       , +(2(), 0()) -> 2()
                       , +(2(), 1()) -> 3()
                       , +(2(), 2()) -> 4()
                       , +(2(), 3()) -> 5()
                       , +(2(), 4()) -> 6()
                       , +(2(), 5()) -> 7()
                       , +(2(), 6()) -> 8()
                       , +(2(), 7()) -> 9()
                       , +(3(), 0()) -> 3()
                       , +(3(), 1()) -> 4()
                       , +(3(), 2()) -> 5()
                       , +(3(), 3()) -> 6()
                       , +(3(), 4()) -> 7()
                       , +(3(), 5()) -> 8()
                       , +(3(), 6()) -> 9()
                       , +(4(), 0()) -> 4()
                       , +(4(), 1()) -> 5()
                       , +(4(), 2()) -> 6()
                       , +(4(), 3()) -> 7()
                       , +(4(), 4()) -> 8()
                       , +(4(), 5()) -> 9()
                       , +(5(), 0()) -> 5()
                       , +(5(), 1()) -> 6()
                       , +(5(), 2()) -> 7()
                       , +(5(), 3()) -> 8()
                       , +(5(), 4()) -> 9()
                       , +(6(), 0()) -> 6()
                       , +(6(), 1()) -> 7()
                       , +(6(), 2()) -> 8()
                       , +(6(), 3()) -> 9()
                       , +(7(), 0()) -> 7()
                       , +(7(), 1()) -> 8()
                       , +(7(), 2()) -> 9()
                       , +(8(), 0()) -> 8()
                       , +(8(), 1()) -> 9()
                       , +(9(), 0()) -> 9()}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component: {c(x, c(y, z)) -> c(+(x, y), z)}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(+) = {}, Uargs(c) = {1, 2}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       +(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 0]      [0 0]      [1]
                       0() = [1]
                             [0]
                       1() = [1]
                             [0]
                       2() = [1]
                             [0]
                       3() = [2]
                             [0]
                       4() = [2]
                             [0]
                       5() = [3]
                             [0]
                       6() = [3]
                             [0]
                       7() = [3]
                             [0]
                       8() = [3]
                             [0]
                       9() = [3]
                             [0]
                       c(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                   [0 0]      [0 1]      [1]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  +(x, c(y, z)) -> c(y, +(x, z))
                         , +(c(x, y), z) -> c(x, +(y, z))}
                      Weak Trs:
                        {  c(x, c(y, z)) -> c(+(x, y), z)
                         , +(9(), 9()) -> c(1(), 8())
                         , +(1(), 9()) -> c(1(), 0())
                         , +(2(), 8()) -> c(1(), 0())
                         , +(2(), 9()) -> c(1(), 1())
                         , +(3(), 8()) -> c(1(), 1())
                         , +(3(), 9()) -> c(1(), 2())
                         , +(4(), 6()) -> c(1(), 0())
                         , +(4(), 8()) -> c(1(), 2())
                         , +(4(), 9()) -> c(1(), 3())
                         , +(6(), 4()) -> c(1(), 0())
                         , +(6(), 6()) -> c(1(), 2())
                         , +(6(), 8()) -> c(1(), 4())
                         , +(6(), 9()) -> c(1(), 5())
                         , +(8(), 2()) -> c(1(), 0())
                         , +(8(), 3()) -> c(1(), 1())
                         , +(8(), 4()) -> c(1(), 2())
                         , +(8(), 6()) -> c(1(), 4())
                         , +(8(), 8()) -> c(1(), 6())
                         , +(8(), 9()) -> c(1(), 7())
                         , +(9(), 1()) -> c(1(), 0())
                         , +(9(), 2()) -> c(1(), 1())
                         , +(9(), 3()) -> c(1(), 2())
                         , +(9(), 4()) -> c(1(), 3())
                         , +(9(), 6()) -> c(1(), 5())
                         , +(9(), 8()) -> c(1(), 7())
                         , +(7(), 8()) -> c(1(), 5())
                         , +(4(), 7()) -> c(1(), 1())
                         , +(6(), 7()) -> c(1(), 3())
                         , +(7(), 4()) -> c(1(), 1())
                         , +(7(), 6()) -> c(1(), 3())
                         , +(7(), 7()) -> c(1(), 4())
                         , +(7(), 9()) -> c(1(), 6())
                         , +(8(), 7()) -> c(1(), 5())
                         , +(9(), 7()) -> c(1(), 6())
                         , +(5(), 5()) -> c(1(), 0())
                         , +(5(), 6()) -> c(1(), 1())
                         , +(5(), 8()) -> c(1(), 3())
                         , +(5(), 9()) -> c(1(), 4())
                         , +(6(), 5()) -> c(1(), 1())
                         , +(8(), 5()) -> c(1(), 3())
                         , +(9(), 5()) -> c(1(), 4())
                         , +(3(), 7()) -> c(1(), 0())
                         , +(5(), 7()) -> c(1(), 2())
                         , +(7(), 3()) -> c(1(), 0())
                         , +(7(), 5()) -> c(1(), 2())
                         , c(0(), x) -> x
                         , +(0(), 0()) -> 0()
                         , +(0(), 1()) -> 1()
                         , +(0(), 2()) -> 2()
                         , +(0(), 3()) -> 3()
                         , +(0(), 4()) -> 4()
                         , +(0(), 5()) -> 5()
                         , +(0(), 6()) -> 6()
                         , +(0(), 7()) -> 7()
                         , +(0(), 8()) -> 8()
                         , +(0(), 9()) -> 9()
                         , +(1(), 0()) -> 1()
                         , +(1(), 1()) -> 2()
                         , +(1(), 2()) -> 3()
                         , +(1(), 3()) -> 4()
                         , +(1(), 4()) -> 5()
                         , +(1(), 5()) -> 6()
                         , +(1(), 6()) -> 7()
                         , +(1(), 7()) -> 8()
                         , +(1(), 8()) -> 9()
                         , +(2(), 0()) -> 2()
                         , +(2(), 1()) -> 3()
                         , +(2(), 2()) -> 4()
                         , +(2(), 3()) -> 5()
                         , +(2(), 4()) -> 6()
                         , +(2(), 5()) -> 7()
                         , +(2(), 6()) -> 8()
                         , +(2(), 7()) -> 9()
                         , +(3(), 0()) -> 3()
                         , +(3(), 1()) -> 4()
                         , +(3(), 2()) -> 5()
                         , +(3(), 3()) -> 6()
                         , +(3(), 4()) -> 7()
                         , +(3(), 5()) -> 8()
                         , +(3(), 6()) -> 9()
                         , +(4(), 0()) -> 4()
                         , +(4(), 1()) -> 5()
                         , +(4(), 2()) -> 6()
                         , +(4(), 3()) -> 7()
                         , +(4(), 4()) -> 8()
                         , +(4(), 5()) -> 9()
                         , +(5(), 0()) -> 5()
                         , +(5(), 1()) -> 6()
                         , +(5(), 2()) -> 7()
                         , +(5(), 3()) -> 8()
                         , +(5(), 4()) -> 9()
                         , +(6(), 0()) -> 6()
                         , +(6(), 1()) -> 7()
                         , +(6(), 2()) -> 8()
                         , +(6(), 3()) -> 9()
                         , +(7(), 0()) -> 7()
                         , +(7(), 1()) -> 8()
                         , +(7(), 2()) -> 9()
                         , +(8(), 0()) -> 8()
                         , +(8(), 1()) -> 9()
                         , +(9(), 0()) -> 9()}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  +(x, c(y, z)) -> c(y, +(x, z))
                           , +(c(x, y), z) -> c(x, +(y, z))}
                        Weak Trs:
                          {  c(x, c(y, z)) -> c(+(x, y), z)
                           , +(9(), 9()) -> c(1(), 8())
                           , +(1(), 9()) -> c(1(), 0())
                           , +(2(), 8()) -> c(1(), 0())
                           , +(2(), 9()) -> c(1(), 1())
                           , +(3(), 8()) -> c(1(), 1())
                           , +(3(), 9()) -> c(1(), 2())
                           , +(4(), 6()) -> c(1(), 0())
                           , +(4(), 8()) -> c(1(), 2())
                           , +(4(), 9()) -> c(1(), 3())
                           , +(6(), 4()) -> c(1(), 0())
                           , +(6(), 6()) -> c(1(), 2())
                           , +(6(), 8()) -> c(1(), 4())
                           , +(6(), 9()) -> c(1(), 5())
                           , +(8(), 2()) -> c(1(), 0())
                           , +(8(), 3()) -> c(1(), 1())
                           , +(8(), 4()) -> c(1(), 2())
                           , +(8(), 6()) -> c(1(), 4())
                           , +(8(), 8()) -> c(1(), 6())
                           , +(8(), 9()) -> c(1(), 7())
                           , +(9(), 1()) -> c(1(), 0())
                           , +(9(), 2()) -> c(1(), 1())
                           , +(9(), 3()) -> c(1(), 2())
                           , +(9(), 4()) -> c(1(), 3())
                           , +(9(), 6()) -> c(1(), 5())
                           , +(9(), 8()) -> c(1(), 7())
                           , +(7(), 8()) -> c(1(), 5())
                           , +(4(), 7()) -> c(1(), 1())
                           , +(6(), 7()) -> c(1(), 3())
                           , +(7(), 4()) -> c(1(), 1())
                           , +(7(), 6()) -> c(1(), 3())
                           , +(7(), 7()) -> c(1(), 4())
                           , +(7(), 9()) -> c(1(), 6())
                           , +(8(), 7()) -> c(1(), 5())
                           , +(9(), 7()) -> c(1(), 6())
                           , +(5(), 5()) -> c(1(), 0())
                           , +(5(), 6()) -> c(1(), 1())
                           , +(5(), 8()) -> c(1(), 3())
                           , +(5(), 9()) -> c(1(), 4())
                           , +(6(), 5()) -> c(1(), 1())
                           , +(8(), 5()) -> c(1(), 3())
                           , +(9(), 5()) -> c(1(), 4())
                           , +(3(), 7()) -> c(1(), 0())
                           , +(5(), 7()) -> c(1(), 2())
                           , +(7(), 3()) -> c(1(), 0())
                           , +(7(), 5()) -> c(1(), 2())
                           , c(0(), x) -> x
                           , +(0(), 0()) -> 0()
                           , +(0(), 1()) -> 1()
                           , +(0(), 2()) -> 2()
                           , +(0(), 3()) -> 3()
                           , +(0(), 4()) -> 4()
                           , +(0(), 5()) -> 5()
                           , +(0(), 6()) -> 6()
                           , +(0(), 7()) -> 7()
                           , +(0(), 8()) -> 8()
                           , +(0(), 9()) -> 9()
                           , +(1(), 0()) -> 1()
                           , +(1(), 1()) -> 2()
                           , +(1(), 2()) -> 3()
                           , +(1(), 3()) -> 4()
                           , +(1(), 4()) -> 5()
                           , +(1(), 5()) -> 6()
                           , +(1(), 6()) -> 7()
                           , +(1(), 7()) -> 8()
                           , +(1(), 8()) -> 9()
                           , +(2(), 0()) -> 2()
                           , +(2(), 1()) -> 3()
                           , +(2(), 2()) -> 4()
                           , +(2(), 3()) -> 5()
                           , +(2(), 4()) -> 6()
                           , +(2(), 5()) -> 7()
                           , +(2(), 6()) -> 8()
                           , +(2(), 7()) -> 9()
                           , +(3(), 0()) -> 3()
                           , +(3(), 1()) -> 4()
                           , +(3(), 2()) -> 5()
                           , +(3(), 3()) -> 6()
                           , +(3(), 4()) -> 7()
                           , +(3(), 5()) -> 8()
                           , +(3(), 6()) -> 9()
                           , +(4(), 0()) -> 4()
                           , +(4(), 1()) -> 5()
                           , +(4(), 2()) -> 6()
                           , +(4(), 3()) -> 7()
                           , +(4(), 4()) -> 8()
                           , +(4(), 5()) -> 9()
                           , +(5(), 0()) -> 5()
                           , +(5(), 1()) -> 6()
                           , +(5(), 2()) -> 7()
                           , +(5(), 3()) -> 8()
                           , +(5(), 4()) -> 9()
                           , +(6(), 0()) -> 6()
                           , +(6(), 1()) -> 7()
                           , +(6(), 2()) -> 8()
                           , +(6(), 3()) -> 9()
                           , +(7(), 0()) -> 7()
                           , +(7(), 1()) -> 8()
                           , +(7(), 2()) -> 9()
                           , +(8(), 0()) -> 8()
                           , +(8(), 1()) -> 9()
                           , +(9(), 0()) -> 9()}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        The problem is match-bounded by 0.
                        The enriched problem is compatible with the following automaton:
                        {  +_0(2, 2) -> 1
                         , 0_0() -> 1
                         , 0_0() -> 2
                         , 1_0() -> 1
                         , 1_0() -> 2
                         , 2_0() -> 1
                         , 2_0() -> 2
                         , 3_0() -> 1
                         , 3_0() -> 2
                         , 4_0() -> 1
                         , 4_0() -> 2
                         , 5_0() -> 1
                         , 5_0() -> 2
                         , 6_0() -> 1
                         , 6_0() -> 2
                         , 7_0() -> 1
                         , 7_0() -> 2
                         , 8_0() -> 1
                         , 8_0() -> 2
                         , 9_0() -> 1
                         , 9_0() -> 2
                         , c_0(2, 2) -> 1}

Hurray, we answered YES(?,O(n^1))