We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(gt) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3) = [1 3] x1 + [0 2] x2 + [0 0] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [0] [0] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [2] [0 0] [0 0] [1] s(x1) = [0 0] x1 + [0] [0 0] [1] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(true(), x, y) -> f(gt(x, y), s(x), s(s(y)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(gt) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3) = [1 3] x1 + [0 0] x2 + [0 3] x3 + [0] [0 0] [0 0] [0 0] [1] true() = [0] [3] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 1] [2] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [1] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak DPs: { f^#(true(), x, y) -> f^#(gt(x, y), s(x), s(s(y))) , gt^#(0(), v) -> c_3() , gt^#(s(u), 0()) -> c_4()} We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { f^#(true(), x, y) -> f^#(gt(x, y), s(x), s(s(y))) , gt^#(0(), v) -> c_3() , gt^#(s(u), 0()) -> c_4()} Weak Trs: { f(true(), x, y) -> f(gt(x, y), s(x), s(s(y))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {gt(s(u), s(v)) -> gt(u, v)} Weak Usable Rules: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { f^#(true(), x, y) -> f^#(gt(x, y), s(x), s(s(y))) , gt^#(0(), v) -> c_3() , gt^#(s(u), 0()) -> c_4()} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { f^#(true(), x, y) -> f^#(gt(x, y), s(x), s(s(y))) , gt^#(0(), v) -> c_3() , gt^#(s(u), 0()) -> c_4()} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->2:{1} [ YES(?,O(n^1)) ] | |->3:{3} [ YES(O(1),O(1)) ] | `->4:{4} [ YES(O(1),O(1)) ] ->1:{2} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: gt^#(s(u), s(v)) -> gt^#(u, v)} WeakDPs DPs: { 2: f^#(true(), x, y) -> f^#(gt(x, y), s(x), s(s(y))) , 3: gt^#(0(), v) -> c_3() , 4: gt^#(s(u), 0()) -> c_4()} * Path 2:{1}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , gt^#_0(2, 2) -> 1 , gt^#_1(2, 2) -> 1} * Path 2:{1}->3:{3}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{1}->4:{4}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{2}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))