We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , trunc(s(s(x))) -> s(s(trunc(x))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , trunc(s(s(x))) -> s(s(trunc(x))) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1, 2}, Uargs(gt) = {}, Uargs(trunc) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 0] [1 0] [1] true() = [0] [0] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] trunc(x1) = [0 0] x1 + [3] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 1] [2] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(s(s(x))) -> s(s(trunc(x))) , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(true(), x, y) -> f(gt(x, y), trunc(x), s(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1, 2}, Uargs(gt) = {}, Uargs(trunc) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3) = [1 1] x1 + [1 0] x2 + [0 2] x3 + [0] [0 0] [0 0] [0 0] [1] true() = [1] [3] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 1] [1] trunc(x1) = [0 0] x1 + [0] [0 0] [2] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [2] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { trunc(s(s(x))) -> s(s(trunc(x))) , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {gt(s(u), s(v)) -> gt(u, v)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1, 2}, Uargs(gt) = {}, Uargs(trunc) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [3] [0 0] [0 0] [0 0] [1] true() = [2] [0] gt(x1, x2) = [1 0] x1 + [0 0] x2 + [2] [0 0] [0 0] [1] trunc(x1) = [0 0] x1 + [0] [0 0] [1] s(x1) = [1 0] x1 + [2] [0 0] [0] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak DPs: { gt^#(s(u), s(v)) -> gt^#(u, v) , f^#(true(), x, y) -> f^#(gt(x, y), trunc(x), s(y)) , trunc^#(0()) -> c_4() , trunc^#(s(0())) -> c_5() , gt^#(0(), v) -> c_6() , gt^#(s(u), 0()) -> c_7()} We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: { gt^#(s(u), s(v)) -> gt^#(u, v) , f^#(true(), x, y) -> f^#(gt(x, y), trunc(x), s(y)) , trunc^#(0()) -> c_4() , trunc^#(s(0())) -> c_5() , gt^#(0(), v) -> c_6() , gt^#(s(u), 0()) -> c_7()} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , f(true(), x, y) -> f(gt(x, y), trunc(x), s(y)) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Usable Rules: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: { gt^#(s(u), s(v)) -> gt^#(u, v) , f^#(true(), x, y) -> f^#(gt(x, y), trunc(x), s(y)) , trunc^#(0()) -> c_4() , trunc^#(s(0())) -> c_5() , gt^#(0(), v) -> c_6() , gt^#(s(u), 0()) -> c_7()} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: { gt^#(s(u), s(v)) -> gt^#(u, v) , f^#(true(), x, y) -> f^#(gt(x, y), trunc(x), s(y)) , trunc^#(0()) -> c_4() , trunc^#(s(0())) -> c_5() , gt^#(0(), v) -> c_6() , gt^#(s(u), 0()) -> c_7()} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->5:{1} [ YES(?,O(n^1)) ] | |->6:{4} [ YES(O(1),O(1)) ] | `->7:{5} [ YES(O(1),O(1)) ] ->2:{2} [ subsumed ] | |->3:{6} [ YES(O(1),O(1)) ] | `->4:{7} [ YES(O(1),O(1)) ] ->1:{3} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: trunc^#(s(s(x))) -> trunc^#(x)} WeakDPs DPs: { 2: gt^#(s(u), s(v)) -> gt^#(u, v) , 3: f^#(true(), x, y) -> f^#(gt(x, y), trunc(x), s(y)) , 4: trunc^#(0()) -> c_4() , 5: trunc^#(s(0())) -> c_5() , 6: gt^#(0(), v) -> c_6() , 7: gt^#(s(u), 0()) -> c_7()} * Path 5:{1}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {trunc^#(s(s(x))) -> trunc^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(5) -> 5 , trunc^#_0(5) -> 8 , trunc^#_1(5) -> 8} * Path 5:{1}->6:{4}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{1}->7:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {trunc^#(s(s(x))) -> trunc^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{2}: subsumed -------------------- This path is subsumed by the proof of paths 2:{2}->4:{7}, 2:{2}->3:{6}. * Path 2:{2}->3:{6}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{2}->4:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {trunc(s(s(x))) -> s(s(trunc(x)))} Weak Trs: { gt(s(u), s(v)) -> gt(u, v) , trunc(0()) -> 0() , trunc(s(0())) -> 0() , gt(0(), v) -> false() , gt(s(u), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))