We consider the following Problem: Strict Trs: { f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z)) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z)) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(g) = {1}, Uargs(gt) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3, x4) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] true() = [0] [2] g(x1, x2, x3, x4) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(true(), x, y, z) -> g(gt(x, y), x, y, z) , gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(true(), x, y, z) -> g(gt(x, y), x, y, z)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(g) = {1}, Uargs(gt) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3, x4) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] true() = [0] [3] g(x1, x2, x3, x4) = [1 3] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [0] [0 0] [0 0] [0 0] [0 0] [1] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gt(0(), v) -> false() , gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {gt(0(), v) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(g) = {1}, Uargs(gt) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1, x2, x3, x4) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [3] [0 0] [0 0] [0 0] [0 0] [1] true() = [0] [3] g(x1, x2, x3, x4) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1 1] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] gt(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] s(x1) = [0 1] x1 + [0] [0 0] [0] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: { gt(0(), v) -> false() , f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { gt^#(s(u), 0()) -> c_1() , gt^#(s(u), s(v)) -> gt^#(u, v)} Weak DPs: { gt^#(0(), v) -> c_3() , f^#(true(), x, y, z) -> g^#(gt(x, y), x, y, z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, s(y), z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, y, s(z))} We consider the following Problem: Strict DPs: { gt^#(s(u), 0()) -> c_1() , gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { gt^#(0(), v) -> c_3() , f^#(true(), x, y, z) -> g^#(gt(x, y), x, y, z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, s(y), z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, y, s(z))} Weak Trs: { gt(0(), v) -> false() , f(true(), x, y, z) -> g(gt(x, y), x, y, z) , g(true(), x, y, z) -> f(gt(x, z), x, s(y), z) , g(true(), x, y, z) -> f(gt(x, z), x, y, s(z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Usable Rules: {gt(0(), v) -> false()} We consider the following Problem: Strict DPs: { gt^#(s(u), 0()) -> c_1() , gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { gt^#(0(), v) -> c_3() , f^#(true(), x, y, z) -> g^#(gt(x, y), x, y, z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, s(y), z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, y, s(z))} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: { gt^#(s(u), 0()) -> c_1() , gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: { gt^#(0(), v) -> c_3() , f^#(true(), x, y, z) -> g^#(gt(x, y), x, y, z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, s(y), z) , g^#(true(), x, y, z) -> f^#(gt(x, z), x, y, s(z))} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->2:{2} [ YES(?,O(n^1)) ] | |->4:{1} [ YES(?,O(n^1)) ] | `->3:{3} [ YES(O(1),O(1)) ] ->1:{4,6,5} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: gt^#(s(u), 0()) -> c_1() , 2: gt^#(s(u), s(v)) -> gt^#(u, v)} WeakDPs DPs: { 3: gt^#(0(), v) -> c_3() , 4: f^#(true(), x, y, z) -> g^#(gt(x, y), x, y, z) , 5: g^#(true(), x, y, z) -> f^#(gt(x, z), x, s(y), z) , 6: g^#(true(), x, y, z) -> f^#(gt(x, z), x, y, s(z))} * Path 2:{2}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , gt^#_0(2, 2) -> 1 , gt^#_1(2, 2) -> 1} * Path 2:{2}->4:{1}: YES(?,O(n^1)) -------------------------------- We consider the following Problem: Strict DPs: {gt^#(s(u), 0()) -> c_1()} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), 0()) -> c_1()} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gt^#(s(u), 0()) -> c_1()} Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gt^#(s(u), 0()) -> c_1()} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , 0_0() -> 2 , gt^#_0(2, 2) -> 1 , c_1_1() -> 1} * Path 2:{2}->3:{3}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gt^#(s(u), s(v)) -> gt^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{4,6,5}: YES(O(1),O(1)) ------------------------------ We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gt(s(u), 0()) -> true() , gt(s(u), s(v)) -> gt(u, v)} Weak Trs: {gt(0(), v) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))