We consider the following Problem:

  Strict Trs:
    {  minus(x, y) -> cond(equal(min(x, y), y), x, y)
     , cond(true(), x, y) -> s(minus(x, s(y)))
     , min(0(), v) -> 0()
     , min(u, 0()) -> 0()
     , min(s(u), s(v)) -> s(min(u, v))
     , equal(0(), 0()) -> true()
     , equal(s(x), 0()) -> false()
     , equal(0(), s(y)) -> false()
     , equal(s(x), s(y)) -> equal(x, y)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  minus(x, y) -> cond(equal(min(x, y), y), x, y)
       , cond(true(), x, y) -> s(minus(x, s(y)))
       , min(0(), v) -> 0()
       , min(u, 0()) -> 0()
       , min(s(u), s(v)) -> s(min(u, v))
       , equal(0(), 0()) -> true()
       , equal(s(x), 0()) -> false()
       , equal(0(), s(y)) -> false()
       , equal(s(x), s(y)) -> equal(x, y)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {cond(true(), x, y) -> s(minus(x, s(y)))}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1},
        Uargs(min) = {}, Uargs(s) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       minus(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                       [0 0]      [0 0]      [0]
       cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1]
                          [0 0]      [0 0]      [0 0]      [1]
       equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [1]
       min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [1]
       true() = [0]
                [0]
       s(x1) = [1 0] x1 + [0]
               [0 0]      [0]
       0() = [0]
             [0]
       false() = [0]
                 [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  minus(x, y) -> cond(equal(min(x, y), y), x, y)
         , min(0(), v) -> 0()
         , min(u, 0()) -> 0()
         , min(s(u), s(v)) -> s(min(u, v))
         , equal(0(), 0()) -> true()
         , equal(s(x), 0()) -> false()
         , equal(0(), s(y)) -> false()
         , equal(s(x), s(y)) -> equal(x, y)}
      Weak Trs: {cond(true(), x, y) -> s(minus(x, s(y)))}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  equal(s(x), 0()) -> false()
         , equal(s(x), s(y)) -> equal(x, y)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1},
          Uargs(min) = {}, Uargs(s) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         minus(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                         [0 0]      [0 0]      [0]
         cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1]
                            [0 0]      [0 0]      [0 0]      [1]
         equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [1]
         min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [1]
         true() = [3]
                  [0]
         s(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
         0() = [0]
               [0]
         false() = [0]
                   [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  minus(x, y) -> cond(equal(min(x, y), y), x, y)
           , min(0(), v) -> 0()
           , min(u, 0()) -> 0()
           , min(s(u), s(v)) -> s(min(u, v))
           , equal(0(), 0()) -> true()
           , equal(0(), s(y)) -> false()}
        Weak Trs:
          {  equal(s(x), 0()) -> false()
           , equal(s(x), s(y)) -> equal(x, y)
           , cond(true(), x, y) -> s(minus(x, s(y)))}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {minus(x, y) -> cond(equal(min(x, y), y), x, y)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1},
            Uargs(min) = {}, Uargs(s) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           minus(x1, x2) = [1 1] x1 + [1 2] x2 + [2]
                           [0 0]      [0 0]      [2]
           cond(x1, x2, x3) = [1 3] x1 + [1 1] x2 + [1 1] x3 + [1]
                              [0 0]      [0 0]      [0 0]      [1]
           equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
           min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [1]
           true() = [2]
                    [2]
           s(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
           0() = [0]
                 [0]
           false() = [0]
                     [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  min(0(), v) -> 0()
             , min(u, 0()) -> 0()
             , min(s(u), s(v)) -> s(min(u, v))
             , equal(0(), 0()) -> true()
             , equal(0(), s(y)) -> false()}
          Weak Trs:
            {  minus(x, y) -> cond(equal(min(x, y), y), x, y)
             , equal(s(x), 0()) -> false()
             , equal(s(x), s(y)) -> equal(x, y)
             , cond(true(), x, y) -> s(minus(x, s(y)))}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  min(0(), v) -> 0()
             , min(u, 0()) -> 0()
             , equal(0(), s(y)) -> false()}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1},
              Uargs(min) = {}, Uargs(s) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             minus(x1, x2) = [1 1] x1 + [1 1] x2 + [3]
                             [0 0]      [0 0]      [2]
             cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1]
                                [0 0]      [0 0]      [0 0]      [1]
             equal(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                             [0 0]      [0 0]      [1]
             min(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                           [0 0]      [1 0]      [1]
             true() = [3]
                      [0]
             s(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             0() = [0]
                   [0]
             false() = [0]
                       [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  min(s(u), s(v)) -> s(min(u, v))
               , equal(0(), 0()) -> true()}
            Weak Trs:
              {  min(0(), v) -> 0()
               , min(u, 0()) -> 0()
               , equal(0(), s(y)) -> false()
               , minus(x, y) -> cond(equal(min(x, y), y), x, y)
               , equal(s(x), 0()) -> false()
               , equal(s(x), s(y)) -> equal(x, y)
               , cond(true(), x, y) -> s(minus(x, s(y)))}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            We consider the following Problem:
            
              Strict Trs:
                {  min(s(u), s(v)) -> s(min(u, v))
                 , equal(0(), 0()) -> true()}
              Weak Trs:
                {  min(0(), v) -> 0()
                 , min(u, 0()) -> 0()
                 , equal(0(), s(y)) -> false()
                 , minus(x, y) -> cond(equal(min(x, y), y), x, y)
                 , equal(s(x), 0()) -> false()
                 , equal(s(x), s(y)) -> equal(x, y)
                 , cond(true(), x, y) -> s(minus(x, s(y)))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We have computed the following dependency pairs
              
                Strict DPs:
                  {  min^#(s(u), s(v)) -> min^#(u, v)
                   , equal^#(0(), 0()) -> c_2()}
                Weak DPs:
                  {  min^#(0(), v) -> c_3()
                   , min^#(u, 0()) -> c_4()
                   , equal^#(0(), s(y)) -> c_5()
                   , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y)
                   , equal^#(s(x), 0()) -> c_7()
                   , equal^#(s(x), s(y)) -> equal^#(x, y)
                   , cond^#(true(), x, y) -> minus^#(x, s(y))}
              
              We consider the following Problem:
              
                Strict DPs:
                  {  min^#(s(u), s(v)) -> min^#(u, v)
                   , equal^#(0(), 0()) -> c_2()}
                Strict Trs:
                  {  min(s(u), s(v)) -> s(min(u, v))
                   , equal(0(), 0()) -> true()}
                Weak DPs:
                  {  min^#(0(), v) -> c_3()
                   , min^#(u, 0()) -> c_4()
                   , equal^#(0(), s(y)) -> c_5()
                   , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y)
                   , equal^#(s(x), 0()) -> c_7()
                   , equal^#(s(x), s(y)) -> equal^#(x, y)
                   , cond^#(true(), x, y) -> minus^#(x, s(y))}
                Weak Trs:
                  {  min(0(), v) -> 0()
                   , min(u, 0()) -> 0()
                   , equal(0(), s(y)) -> false()
                   , minus(x, y) -> cond(equal(min(x, y), y), x, y)
                   , equal(s(x), 0()) -> false()
                   , equal(s(x), s(y)) -> equal(x, y)
                   , cond(true(), x, y) -> s(minus(x, s(y)))}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We replace strict/weak-rules by the corresponding usable rules:
                
                  Strict Usable Rules:
                    {  min(s(u), s(v)) -> s(min(u, v))
                     , equal(0(), 0()) -> true()}
                  Weak Usable Rules:
                    {  min(0(), v) -> 0()
                     , min(u, 0()) -> 0()
                     , equal(0(), s(y)) -> false()
                     , equal(s(x), 0()) -> false()
                     , equal(s(x), s(y)) -> equal(x, y)}
                
                We consider the following Problem:
                
                  Strict DPs:
                    {  min^#(s(u), s(v)) -> min^#(u, v)
                     , equal^#(0(), 0()) -> c_2()}
                  Strict Trs:
                    {  min(s(u), s(v)) -> s(min(u, v))
                     , equal(0(), 0()) -> true()}
                  Weak DPs:
                    {  min^#(0(), v) -> c_3()
                     , min^#(u, 0()) -> c_4()
                     , equal^#(0(), s(y)) -> c_5()
                     , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y)
                     , equal^#(s(x), 0()) -> c_7()
                     , equal^#(s(x), s(y)) -> equal^#(x, y)
                     , cond^#(true(), x, y) -> minus^#(x, s(y))}
                  Weak Trs:
                    {  min(0(), v) -> 0()
                     , min(u, 0()) -> 0()
                     , equal(0(), s(y)) -> false()
                     , equal(s(x), 0()) -> false()
                     , equal(s(x), s(y)) -> equal(x, y)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We consider the following Problem:
                  
                    Strict DPs:
                      {  min^#(s(u), s(v)) -> min^#(u, v)
                       , equal^#(0(), 0()) -> c_2()}
                    Strict Trs:
                      {  min(s(u), s(v)) -> s(min(u, v))
                       , equal(0(), 0()) -> true()}
                    Weak DPs:
                      {  min^#(0(), v) -> c_3()
                       , min^#(u, 0()) -> c_4()
                       , equal^#(0(), s(y)) -> c_5()
                       , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y)
                       , equal^#(s(x), 0()) -> c_7()
                       , equal^#(s(x), s(y)) -> equal^#(x, y)
                       , cond^#(true(), x, y) -> minus^#(x, s(y))}
                    Weak Trs:
                      {  min(0(), v) -> 0()
                       , min(u, 0()) -> 0()
                       , equal(0(), s(y)) -> false()
                       , equal(s(x), 0()) -> false()
                       , equal(s(x), s(y)) -> equal(x, y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We use following congruence DG for path analysis
                    
                    ->6:{1}                                                     [   YES(?,O(n^1))    ]
                       |
                       |->7:{3}                                                 [   YES(O(1),O(1))   ]
                       |
                       `->8:{4}                                                 [   YES(O(1),O(1))   ]
                    
                    ->3:{6,9}                                                   [   YES(O(1),O(1))   ]
                    
                    ->1:{8}                                                     [      subsumed      ]
                       |
                       |->5:{2}                                                 [   YES(?,O(n^1))    ]
                       |
                       |->4:{5}                                                 [   YES(O(1),O(1))   ]
                       |
                       `->2:{7}                                                 [   YES(O(1),O(1))   ]
                    
                    
                    Here dependency-pairs are as follows:
                    
                    Strict DPs:
                      {  1: min^#(s(u), s(v)) -> min^#(u, v)
                       , 2: equal^#(0(), 0()) -> c_2()}
                    WeakDPs DPs:
                      {  3: min^#(0(), v) -> c_3()
                       , 4: min^#(u, 0()) -> c_4()
                       , 5: equal^#(0(), s(y)) -> c_5()
                       , 6: minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y)
                       , 7: equal^#(s(x), 0()) -> c_7()
                       , 8: equal^#(s(x), s(y)) -> equal^#(x, y)
                       , 9: cond^#(true(), x, y) -> minus^#(x, s(y))}
                    
                    * Path 6:{1}: YES(?,O(n^1))
                      -------------------------
                      
                      We consider the following Problem:
                      
                        Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(?,O(n^1))
                            
                            Proof:
                              The problem is match-bounded by 1.
                              The enriched problem is compatible with the following automaton:
                              {  s_0(2) -> 2
                               , min^#_0(2, 2) -> 1
                               , min^#_1(2, 2) -> 1}
                    
                    * Path 6:{1}->7:{3}: YES(O(1),O(1))
                      ---------------------------------
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 6:{1}->8:{4}: YES(O(1),O(1))
                      ---------------------------------
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 3:{6,9}: YES(O(1),O(1))
                      ----------------------------
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 1:{8}: subsumed
                      --------------------
                      
                      This path is subsumed by the proof of paths 1:{8}->5:{2},
                                                                  1:{8}->4:{5},
                                                                  1:{8}->2:{7}.
                    
                    * Path 1:{8}->5:{2}: YES(?,O(n^1))
                      --------------------------------
                      
                      We consider the following Problem:
                      
                        Strict DPs: {equal^#(0(), 0()) -> c_2()}
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict DPs: {equal^#(0(), 0()) -> c_2()}
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict DPs: {equal^#(0(), 0()) -> c_2()}
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Strict DPs: {equal^#(0(), 0()) -> c_2()}
                              Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(?,O(n^1))
                            
                            Proof:
                              The problem is match-bounded by 1.
                              The enriched problem is compatible with the following automaton:
                              {  s_0(2) -> 2
                               , 0_0() -> 2
                               , equal^#_0(2, 2) -> 1
                               , c_2_1() -> 1}
                    
                    * Path 1:{8}->4:{5}: YES(O(1),O(1))
                      ---------------------------------
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded
                    
                    * Path 1:{8}->2:{7}: YES(O(1),O(1))
                      ---------------------------------
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  min(s(u), s(v)) -> s(min(u, v))
                           , equal(0(), 0()) -> true()}
                        Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                        Weak Trs:
                          {  min(0(), v) -> 0()
                           , min(u, 0()) -> 0()
                           , equal(0(), s(y)) -> false()
                           , equal(s(x), 0()) -> false()
                           , equal(s(x), s(y)) -> equal(x, y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Strict Trs:
                            {  min(s(u), s(v)) -> s(min(u, v))
                             , equal(0(), 0()) -> true()}
                          Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                          Weak Trs:
                            {  min(0(), v) -> 0()
                             , min(u, 0()) -> 0()
                             , equal(0(), s(y)) -> false()
                             , equal(s(x), 0()) -> false()
                             , equal(s(x), s(y)) -> equal(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs:
                              {  min(s(u), s(v)) -> s(min(u, v))
                               , equal(0(), 0()) -> true()}
                            Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                            Weak Trs:
                              {  min(0(), v) -> 0()
                               , min(u, 0()) -> 0()
                               , equal(0(), s(y)) -> false()
                               , equal(s(x), 0()) -> false()
                               , equal(s(x), s(y)) -> equal(x, y)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            No rule is usable.
                            
                            We consider the following Problem:
                            
                              Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))