We consider the following Problem: Strict Trs: { minus(x, y) -> cond(equal(min(x, y), y), x, y) , cond(true(), x, y) -> s(minus(x, s(y))) , min(0(), v) -> 0() , min(u, 0()) -> 0() , min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true() , equal(s(x), 0()) -> false() , equal(0(), s(y)) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { minus(x, y) -> cond(equal(min(x, y), y), x, y) , cond(true(), x, y) -> s(minus(x, s(y))) , min(0(), v) -> 0() , min(u, 0()) -> 0() , min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true() , equal(s(x), 0()) -> false() , equal(0(), s(y)) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond(true(), x, y) -> s(minus(x, s(y)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1}, Uargs(min) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: minus(x1, x2) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 0] [0] cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] min(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { minus(x, y) -> cond(equal(min(x, y), y), x, y) , min(0(), v) -> 0() , min(u, 0()) -> 0() , min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true() , equal(s(x), 0()) -> false() , equal(0(), s(y)) -> false() , equal(s(x), s(y)) -> equal(x, y)} Weak Trs: {cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1}, Uargs(min) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: minus(x1, x2) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 0] [0] cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] min(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [3] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { minus(x, y) -> cond(equal(min(x, y), y), x, y) , min(0(), v) -> 0() , min(u, 0()) -> 0() , min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true() , equal(0(), s(y)) -> false()} Weak Trs: { equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y) , cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {minus(x, y) -> cond(equal(min(x, y), y), x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1}, Uargs(min) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: minus(x1, x2) = [1 1] x1 + [1 2] x2 + [2] [0 0] [0 0] [2] cond(x1, x2, x3) = [1 3] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] equal(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] min(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [2] [2] s(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true() , equal(0(), s(y)) -> false()} Weak Trs: { minus(x, y) -> cond(equal(min(x, y), y), x, y) , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y) , cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(minus) = {}, Uargs(cond) = {1}, Uargs(equal) = {1}, Uargs(min) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: minus(x1, x2) = [1 1] x1 + [1 1] x2 + [3] [0 0] [0 0] [2] cond(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] equal(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] min(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [1 0] [1] true() = [3] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [0] [0] false() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , minus(x, y) -> cond(equal(min(x, y), y), x, y) , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y) , cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , minus(x, y) -> cond(equal(min(x, y), y), x, y) , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y) , cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { min^#(s(u), s(v)) -> min^#(u, v) , equal^#(0(), 0()) -> c_2()} Weak DPs: { min^#(0(), v) -> c_3() , min^#(u, 0()) -> c_4() , equal^#(0(), s(y)) -> c_5() , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y) , equal^#(s(x), 0()) -> c_7() , equal^#(s(x), s(y)) -> equal^#(x, y) , cond^#(true(), x, y) -> minus^#(x, s(y))} We consider the following Problem: Strict DPs: { min^#(s(u), s(v)) -> min^#(u, v) , equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: { min^#(0(), v) -> c_3() , min^#(u, 0()) -> c_4() , equal^#(0(), s(y)) -> c_5() , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y) , equal^#(s(x), 0()) -> c_7() , equal^#(s(x), s(y)) -> equal^#(x, y) , cond^#(true(), x, y) -> minus^#(x, s(y))} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , minus(x, y) -> cond(equal(min(x, y), y), x, y) , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y) , cond(true(), x, y) -> s(minus(x, s(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Usable Rules: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} We consider the following Problem: Strict DPs: { min^#(s(u), s(v)) -> min^#(u, v) , equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: { min^#(0(), v) -> c_3() , min^#(u, 0()) -> c_4() , equal^#(0(), s(y)) -> c_5() , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y) , equal^#(s(x), 0()) -> c_7() , equal^#(s(x), s(y)) -> equal^#(x, y) , cond^#(true(), x, y) -> minus^#(x, s(y))} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: { min^#(s(u), s(v)) -> min^#(u, v) , equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: { min^#(0(), v) -> c_3() , min^#(u, 0()) -> c_4() , equal^#(0(), s(y)) -> c_5() , minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y) , equal^#(s(x), 0()) -> c_7() , equal^#(s(x), s(y)) -> equal^#(x, y) , cond^#(true(), x, y) -> minus^#(x, s(y))} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->6:{1} [ YES(?,O(n^1)) ] | |->7:{3} [ YES(O(1),O(1)) ] | `->8:{4} [ YES(O(1),O(1)) ] ->3:{6,9} [ YES(O(1),O(1)) ] ->1:{8} [ subsumed ] | |->5:{2} [ YES(?,O(n^1)) ] | |->4:{5} [ YES(O(1),O(1)) ] | `->2:{7} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: min^#(s(u), s(v)) -> min^#(u, v) , 2: equal^#(0(), 0()) -> c_2()} WeakDPs DPs: { 3: min^#(0(), v) -> c_3() , 4: min^#(u, 0()) -> c_4() , 5: equal^#(0(), s(y)) -> c_5() , 6: minus^#(x, y) -> cond^#(equal(min(x, y), y), x, y) , 7: equal^#(s(x), 0()) -> c_7() , 8: equal^#(s(x), s(y)) -> equal^#(x, y) , 9: cond^#(true(), x, y) -> minus^#(x, s(y))} * Path 6:{1}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {min^#(s(u), s(v)) -> min^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , min^#_0(2, 2) -> 1 , min^#_1(2, 2) -> 1} * Path 6:{1}->7:{3}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{1}->8:{4}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {min^#(s(u), s(v)) -> min^#(u, v)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{6,9}: YES(O(1),O(1)) ---------------------------- We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{8}: subsumed -------------------- This path is subsumed by the proof of paths 1:{8}->5:{2}, 1:{8}->4:{5}, 1:{8}->2:{7}. * Path 1:{8}->5:{2}: YES(?,O(n^1)) -------------------------------- We consider the following Problem: Strict DPs: {equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {equal^#(0(), 0()) -> c_2()} Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {equal^#(0(), 0()) -> c_2()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , 0_0() -> 2 , equal^#_0(2, 2) -> 1 , c_2_1() -> 1} * Path 1:{8}->4:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{8}->2:{7}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { min(s(u), s(v)) -> s(min(u, v)) , equal(0(), 0()) -> true()} Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} Weak Trs: { min(0(), v) -> 0() , min(u, 0()) -> 0() , equal(0(), s(y)) -> false() , equal(s(x), 0()) -> false() , equal(s(x), s(y)) -> equal(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {equal^#(s(x), s(y)) -> equal^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))