(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
S tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
K tuples:none
Defined Rule Symbols:
sort, insert, choose
Defined Pair Symbols:
SORT, INSERT, CHOOSE
Compound Symbols:
c1, c3, c5, c6
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
We considered the (Usable) Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
And the Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(CHOOSE(x1, x2, x3, x4)) = 0
POL(INSERT(x1, x2)) = 0
POL(SORT(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(choose(x1, x2, x3, x4)) = [2] + [4]x1 + [2]x4
POL(cons(x1, x2)) = [4] + x2
POL(insert(x1, x2)) = [3] + [3]x1
POL(nil) = [3]
POL(s(x1)) = [1]
POL(sort(x1)) = [2] + [3]x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
S tuples:
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
K tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
Defined Rule Symbols:
sort, insert, choose
Defined Pair Symbols:
SORT, INSERT, CHOOSE
Compound Symbols:
c1, c3, c5, c6
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
We considered the (Usable) Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
And the Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(CHOOSE(x1, x2, x3, x4)) = [2]x2
POL(INSERT(x1, x2)) = [2]x2
POL(SORT(x1)) = [2]x12
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(choose(x1, x2, x3, x4)) = [2] + x2
POL(cons(x1, x2)) = [2] + x2
POL(insert(x1, x2)) = [2] + x2
POL(nil) = 0
POL(s(x1)) = 0
POL(sort(x1)) = x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
S tuples:
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
K tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
Defined Rule Symbols:
sort, insert, choose
Defined Pair Symbols:
SORT, INSERT, CHOOSE
Compound Symbols:
c1, c3, c5, c6
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
S tuples:
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
K tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
Defined Rule Symbols:
sort, insert, choose
Defined Pair Symbols:
SORT, INSERT, CHOOSE
Compound Symbols:
c1, c3, c5, c6
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
We considered the (Usable) Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
And the Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(CHOOSE(x1, x2, x3, x4)) = [1] + x3 + [2]x1·x2
POL(INSERT(x1, x2)) = [1] + x1 + [2]x1·x2
POL(SORT(x1)) = x12
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(choose(x1, x2, x3, x4)) = [1] + x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(insert(x1, x2)) = [1] + x1 + x2
POL(nil) = 0
POL(s(x1)) = [1] + x1
POL(sort(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
sort(nil) → nil
sort(cons(z0, z1)) → insert(z0, sort(z1))
insert(z0, nil) → cons(z0, nil)
insert(z0, cons(z1, z2)) → choose(z0, cons(z1, z2), z0, z1)
choose(z0, cons(z1, z2), z3, 0) → cons(z0, cons(z1, z2))
choose(z0, cons(z1, z2), 0, s(z3)) → cons(z1, insert(z0, z2))
choose(z0, cons(z1, z2), s(z3), s(z4)) → choose(z0, cons(z1, z2), z3, z4)
Tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
S tuples:none
K tuples:
SORT(cons(z0, z1)) → c1(INSERT(z0, sort(z1)), SORT(z1))
CHOOSE(z0, cons(z1, z2), 0, s(z3)) → c5(INSERT(z0, z2))
INSERT(z0, cons(z1, z2)) → c3(CHOOSE(z0, cons(z1, z2), z0, z1))
CHOOSE(z0, cons(z1, z2), s(z3), s(z4)) → c6(CHOOSE(z0, cons(z1, z2), z3, z4))
Defined Rule Symbols:
sort, insert, choose
Defined Pair Symbols:
SORT, INSERT, CHOOSE
Compound Symbols:
c1, c3, c5, c6
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))