(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
+(+(z0, z1), z2) → +(z0, +(z1, z2))
Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
S tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
K tuples:none
Defined Rule Symbols:

*, +

Defined Pair Symbols:

*', +'

Compound Symbols:

c, c1, c2, c3

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
We considered the (Usable) Rules:

+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
And the Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [2] + [3]x1 + [2]x2 + [3]x1·x2   
POL(*'(x1, x2)) = [2]x1 + [2]x1·x2   
POL(+(x1, x2)) = [2] + x1 + x2   
POL(+'(x1, x2)) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c1(x1, x2, x3)) = x1 + x2 + x3   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
+(+(z0, z1), z2) → +(z0, +(z1, z2))
Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
S tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
K tuples:

*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
Defined Rule Symbols:

*, +

Defined Pair Symbols:

*', +'

Compound Symbols:

c, c1, c2, c3

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
We considered the (Usable) Rules:

+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
And the Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [2] + [3]x1 + [2]x2 + [3]x1·x2   
POL(*'(x1, x2)) = [1] + [3]x1 + x2 + [3]x1·x2   
POL(+(x1, x2)) = [2] + x1 + x2   
POL(+'(x1, x2)) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c1(x1, x2, x3)) = x1 + x2 + x3   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
+(+(z0, z1), z2) → +(z0, +(z1, z2))
Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
S tuples:

+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
K tuples:

*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
Defined Rule Symbols:

*, +

Defined Pair Symbols:

*', +'

Compound Symbols:

c, c1, c2, c3

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
We considered the (Usable) Rules:

+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
And the Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [2] + [3]x1 + [3]x2 + [3]x1·x2   
POL(*'(x1, x2)) = [2] + [3]x1 + [2]x2 + [3]x1·x2   
POL(+(x1, x2)) = [3] + [3]x1 + x2   
POL(+'(x1, x2)) = [2] + x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c1(x1, x2, x3)) = x1 + x2 + x3   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2)) = x1 + x2   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z2, z0), *(z2, z1))
*(*(z0, z1), z2) → *(z0, *(z1, z2))
+(+(z0, z1), z2) → +(z0, +(z1, z2))
Tuples:

*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
S tuples:none
K tuples:

*'(+(z0, z1), z2) → c1(+'(*(z2, z0), *(z2, z1)), *'(z2, z0), *'(z2, z1))
*'(*(z0, z1), z2) → c2(*'(z0, *(z1, z2)), *'(z1, z2))
*'(z0, +(z1, z2)) → c(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
+'(+(z0, z1), z2) → c3(+'(z0, +(z1, z2)), +'(z1, z2))
Defined Rule Symbols:

*, +

Defined Pair Symbols:

*', +'

Compound Symbols:

c, c1, c2, c3

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))