We consider the following Problem: Strict Trs: { xor(x, F()) -> x , xor(x, neg(x)) -> F() , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F() , impl(x, y) -> xor(and(x, y), xor(x, T())) , or(x, y) -> xor(and(x, y), xor(x, y)) , equiv(x, y) -> xor(x, xor(y, T())) , neg(x) -> xor(x, T())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: {xor(x, neg(x)) -> F()} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F() , impl(x, y) -> xor(and(x, y), xor(x, T())) , or(x, y) -> xor(and(x, y), xor(x, y)) , equiv(x, y) -> xor(x, xor(y, T())) , neg(x) -> xor(x, T())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F() , impl(x, y) -> xor(and(x, y), xor(x, T())) , or(x, y) -> xor(and(x, y), xor(x, y)) , equiv(x, y) -> xor(x, xor(y, T())) , neg(x) -> xor(x, T())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { xor^#(x, F()) -> c_1() , and^#(x, T()) -> c_2() , and^#(x, F()) -> c_3() , and^#(x, x) -> c_4() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , xor^#(x, x) -> c_6() , impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , equiv^#(x, y) -> xor^#(x, xor(y, T())) , neg^#(x) -> xor^#(x, T())} We consider the following Problem: Strict DPs: { xor^#(x, F()) -> c_1() , and^#(x, T()) -> c_2() , and^#(x, F()) -> c_3() , and^#(x, x) -> c_4() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , xor^#(x, x) -> c_6() , impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , equiv^#(x, y) -> xor^#(x, xor(y, T())) , neg^#(x) -> xor^#(x, T())} Strict Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F() , impl(x, y) -> xor(and(x, y), xor(x, T())) , or(x, y) -> xor(and(x, y), xor(x, y)) , equiv(x, y) -> xor(x, xor(y, T())) , neg(x) -> xor(x, T())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} We consider the following Problem: Strict DPs: { xor^#(x, F()) -> c_1() , and^#(x, T()) -> c_2() , and^#(x, F()) -> c_3() , and^#(x, x) -> c_4() , and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , xor^#(x, x) -> c_6() , impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , equiv^#(x, y) -> xor^#(x, xor(y, T())) , neg^#(x) -> xor^#(x, T())} Strict Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: Dependency Pairs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} TRS Component: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(xor) = {1, 2}, Uargs(neg) = {}, Uargs(and) = {}, Uargs(impl) = {}, Uargs(or) = {}, Uargs(equiv) = {}, Uargs(xor^#) = {1, 2}, Uargs(and^#) = {}, Uargs(impl^#) = {}, Uargs(or^#) = {}, Uargs(equiv^#) = {}, Uargs(neg^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: xor(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 2] [3] F() = [0] [0] neg(x1) = [0 0] x1 + [0] [0 0] [0] and(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 2] [0 0] [0] T() = [0] [0] impl(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] or(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] equiv(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] xor^#(x1, x2) = [2 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] c_1() = [0] [0] and^#(x1, x2) = [2 2] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] c_2() = [0] [0] c_3() = [0] [0] c_4() = [0] [0] c_6() = [0] [0] impl^#(x1, x2) = [3 2] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] or^#(x1, x2) = [3 2] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] equiv^#(x1, x2) = [2 0] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] neg^#(x1) = [2 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict DPs: { xor^#(x, F()) -> c_1() , and^#(x, T()) -> c_2() , and^#(x, F()) -> c_3() , and^#(x, x) -> c_4() , xor^#(x, x) -> c_6() , impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , equiv^#(x, y) -> xor^#(x, xor(y, T())) , neg^#(x) -> xor^#(x, T())} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->9:{2} [ YES(O(1),O(1)) ] ->8:{3} [ YES(O(1),O(1)) ] ->7:{4} [ YES(O(1),O(1)) ] ->5:{6} [ YES(O(1),O(1)) ] | |->10:{1} [ YES(O(1),O(1)) ] | `->6:{5} [ YES(O(1),O(1)) ] ->4:{7} [ YES(O(1),O(1)) ] | |->10:{1} [ YES(O(1),O(1)) ] | `->6:{5} [ YES(O(1),O(1)) ] ->3:{8} [ YES(O(1),O(1)) ] | |->10:{1} [ YES(O(1),O(1)) ] | `->6:{5} [ YES(O(1),O(1)) ] ->2:{9} [ YES(O(1),O(1)) ] | `->6:{5} [ YES(O(1),O(1)) ] ->1:{10} [ subsumed ] | |->10:{1} [ YES(O(1),O(1)) ] | `->6:{5} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: xor^#(x, F()) -> c_1() , 2: and^#(x, T()) -> c_2() , 3: and^#(x, F()) -> c_3() , 4: and^#(x, x) -> c_4() , 5: xor^#(x, x) -> c_6() , 6: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , 7: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 8: equiv^#(x, y) -> xor^#(x, xor(y, T())) , 9: neg^#(x) -> xor^#(x, T())} WeakDPs DPs: {10: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} * Path 9:{2}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, T()) -> c_2()} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, T()) -> c_2() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, T()) -> c_2()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, T()) -> c_2()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, F()) -> c_3()} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, F()) -> c_3() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, F()) -> c_3()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, F()) -> c_3()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 7:{4}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {and^#(x, x) -> c_4()} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: and^#(x, x) -> c_4() together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: and^#(x, x) -> c_4()} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: and^#(x, x) -> c_4()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{6}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{6}->10:{1}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, F()) -> c_1()} Weak DPs: {impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, F()) -> c_1() 2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) -->_1 xor^#(x, F()) -> c_1() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, F()) -> c_1()} WeakDPs DPs: {2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , 1: xor^#(x, F()) -> c_1()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{6}->6:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_6()} Weak DPs: {impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_6() 2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) -->_1 xor^#(x, x) -> c_6() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_6()} WeakDPs DPs: {2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: impl^#(x, y) -> xor^#(and(x, y), xor(x, T())) , 1: xor^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{7}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{7}->10:{1}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, F()) -> c_1()} Weak DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, F()) -> c_1() 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) -->_1 xor^#(x, F()) -> c_1() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, F()) -> c_1()} WeakDPs DPs: {2: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 1: xor^#(x, F()) -> c_1()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{7}->6:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_6()} Weak DPs: {or^#(x, y) -> xor^#(and(x, y), xor(x, y))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_6() 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) -->_1 xor^#(x, x) -> c_6() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_6()} WeakDPs DPs: {2: or^#(x, y) -> xor^#(and(x, y), xor(x, y))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: or^#(x, y) -> xor^#(and(x, y), xor(x, y)) , 1: xor^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{8}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {equiv^#(x, y) -> xor^#(x, xor(y, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: equiv^#(x, y) -> xor^#(x, xor(y, T())) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: equiv^#(x, y) -> xor^#(x, xor(y, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: equiv^#(x, y) -> xor^#(x, xor(y, T()))} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{8}->10:{1}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, F()) -> c_1()} Weak DPs: {equiv^#(x, y) -> xor^#(x, xor(y, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, F()) -> c_1() 2: equiv^#(x, y) -> xor^#(x, xor(y, T())) -->_1 xor^#(x, F()) -> c_1() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, F()) -> c_1()} WeakDPs DPs: {2: equiv^#(x, y) -> xor^#(x, xor(y, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: equiv^#(x, y) -> xor^#(x, xor(y, T())) , 1: xor^#(x, F()) -> c_1()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{8}->6:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_6()} Weak DPs: {equiv^#(x, y) -> xor^#(x, xor(y, T()))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_6() 2: equiv^#(x, y) -> xor^#(x, xor(y, T())) -->_1 xor^#(x, x) -> c_6() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_6()} WeakDPs DPs: {2: equiv^#(x, y) -> xor^#(x, xor(y, T()))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: equiv^#(x, y) -> xor^#(x, xor(y, T())) , 1: xor^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{9}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict DPs: {neg^#(x) -> xor^#(x, T())} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: neg^#(x) -> xor^#(x, T()) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: neg^#(x) -> xor^#(x, T())} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: neg^#(x) -> xor^#(x, T())} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{9}->6:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_6()} Weak DPs: {neg^#(x) -> xor^#(x, T())} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_6() 2: neg^#(x) -> xor^#(x, T()) -->_1 xor^#(x, x) -> c_6() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_6()} WeakDPs DPs: {2: neg^#(x) -> xor^#(x, T())} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: neg^#(x) -> xor^#(x, T()) , 1: xor^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{10}: subsumed --------------------- This path is subsumed by the proof of paths 1:{10}->10:{1}, 1:{10}->6:{5}. * Path 1:{10}->10:{1}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, F()) -> c_1()} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, F()) -> c_1() 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) -->_1 xor^#(x, F()) -> c_1() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, F()) -> c_1()} WeakDPs DPs: {2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , 1: xor^#(x, F()) -> c_1()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{10}->6:{5}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict DPs: {xor^#(x, x) -> c_6()} Weak DPs: {and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: xor^#(x, x) -> c_6() 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) -->_1 xor^#(x, x) -> c_6() :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: xor^#(x, x) -> c_6()} WeakDPs DPs: {2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: and^#(xor(x, y), z) -> xor^#(and(x, z), and(y, z)) , 1: xor^#(x, x) -> c_6()} We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { xor(x, F()) -> x , and(x, T()) -> x , and(x, F()) -> F() , and(x, x) -> x , and(xor(x, y), z) -> xor(and(x, z), and(y, z)) , xor(x, x) -> F()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))