(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
 
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
S tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c3
 
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
COND(
true, 
z0) → 
c(
COND(
odd(
z0), 
p(
z0)), 
ODD(
z0), 
P(
z0)) by 
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
 
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, x0) → c
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, x0) → c
COND(true, 0) → c(COND(false, p(0)), ODD(0), P(0))
 
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c
 
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(COND(x1, x2)) = [4]x2   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [3]   
POL(odd(x1)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   
 
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0), P(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c
 
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
COND(
true, 
0) → 
c(
COND(
odd(
0), 
0), 
ODD(
0), 
P(
0)) by 
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
 
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
COND(true, 0) → c
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, 0) → c
COND(true, 0) → c(COND(false, 0), ODD(0), P(0))
 
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c
 
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
COND(
true, 
s(
z0)) → 
c(
COND(
odd(
s(
z0)), 
z0), 
ODD(
s(
z0)), 
P(
s(
z0))) by 
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(x0)) → c
 
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(x0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)), P(s(z0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(x0)) → c
 
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)), P(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c
 
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
COND(
true, 
s(
0)) → 
c(
COND(
true, 
p(
s(
0))), 
ODD(
s(
0)), 
P(
s(
0))) by 
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
 
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0)) → c
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]   
POL(COND(x1, x2)) = [2]   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [3]   
POL(odd(x1)) = [3] + [3]x1   
POL(p(x1)) = [2] + [3]x1   
POL(s(x1)) = 0   
POL(true) = [3]   
 
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
K tuples:
COND(true, s(0)) → c
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]   
POL(COND(x1, x2)) = [4]x2   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c) = 0   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [3]   
POL(odd(x1)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   
 
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))), P(s(s(z0))))
K tuples:
COND(true, s(0)) → c
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
COND(
true, 
s(
s(
z0))) → 
c(
COND(
odd(
z0), 
p(
s(
s(
z0)))), 
ODD(
s(
s(
z0))), 
P(
s(
s(
z0)))) by 
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
 
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:
COND(true, s(0)) → c
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c, c
 
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)), P(s(0)))
COND(true, s(0)) → c
 
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:none
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]   
POL(COND(x1, x2)) = [4]   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [1]   
POL(odd(x1)) = [3] + [3]x1   
POL(p(x1)) = [4]   
POL(s(x1)) = [2]   
POL(true) = [2]   
 
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))), P(s(s(x0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(COND(x1, x2)) = x2   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [3]   
POL(odd(x1)) = [4] + [3]x1   
POL(p(x1)) = x1   
POL(s(x1)) = [1] + x1   
POL(true) = [3]   
 
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]   
POL(COND(x1, x2)) = [3] + [4]x1   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = 0   
POL(odd(x1)) = [2]   
POL(p(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = [2]   
 
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
ODD, COND
Compound Symbols:
 
c3, c, c
 
(33) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace 
ODD(
s(
s(
z0))) → 
c3(
ODD(
z0)) by 
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
 
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))), P(s(s(0))))
 
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(37) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))), P(s(s(s(0))))) by COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(39) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(s(z0)) → z0
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]   
POL(COND(x1, x2)) = [4]x2   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [5]   
POL(odd(x1)) = 0   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   
POL(true) = 0   
 
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
S tuples:
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(41) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0)))))) by COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(COND(x1, x2)) = [1] + x2   
POL(ODD(x1)) = 0   
POL(P(x1)) = 0   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = [4]   
POL(odd(x1)) = [4]x1   
POL(s(x1)) = [1] + x1   
POL(true) = 0   
 
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
And the Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]   
POL(COND(x1, x2)) = [1] + x22   
POL(ODD(x1)) = x1   
POL(P(x1)) = [1]   
POL(c(x1)) = x1   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1)) = x1   
POL(false) = 0   
POL(odd(x1)) = 0   
POL(s(x1)) = [1] + x1   
POL(true) = 0   
 
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
S tuples:none
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))), P(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))), P(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))), P(s(s(s(s(z0))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
Defined Rule Symbols:
 
cond, odd, p
Defined Pair Symbols:
 
COND, ODD
Compound Symbols:
 
c, c, c3
 
(47) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(48) BOUNDS(O(1), O(1))