We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(true(), true()) -> true() , and(false(), x) -> false() , and(x, false()) -> false() , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(true(), true()) -> true() , and(false(), x) -> false() , and(x, false()) -> false() , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 1] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [1] false() = [0] [0] cond4(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [0 0] [3] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] s(x1) = [0 0] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(true(), true()) -> true() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x} Weak Trs: {p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [2] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] s(x1) = [0 0] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(true(), true()) -> true() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x} Weak Trs: { cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [0] [2] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [0] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] s(x1) = [0 0] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(true(), true()) -> true() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x} Weak Trs: { cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {and(true(), true()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [2] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [0 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [1] s(x1) = [0 0] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x} Weak Trs: { and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [0] [2] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [2] false() = [0] [0] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [1 0] x1 + [0] [0 1] [2] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] s(x1) = [1 0] x1 + [2] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false() , and(x, false()) -> false()} Weak Trs: { p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond2(false(), x, y) -> cond4(gr(y, 0()), x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 1] [1] true() = [0] [1] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] cond3(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 0] [1] 0() = [0] [0] false() = [1] [2] cond4(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 1] [0 1] [0 1] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false() , and(x, false()) -> false()} Weak Trs: { cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [1 1] [1 1] [1 1] [1] true() = [2] [2] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [1 1] [1 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [1 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [1 1] [0 0] [1] 0() = [0] [0] false() = [0] [1] cond4(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [1 1] [1 1] [1 1] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [0] s(x1) = [1 0] x1 + [0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false() , and(x, false()) -> false()} Weak Trs: { cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [0] [0 0] [0 0] [0 0] [1] true() = [2] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [2] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] cond3(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [0] cond4(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [1 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] s(x1) = [0 1] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false() , and(x, false()) -> false()} Weak Trs: { cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {and(x, false()) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] true() = [2] [2] cond2(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] cond3(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [1] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [3] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [2] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [1] [1 0] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] s(x1) = [0 1] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , and(false(), x) -> false()} Weak Trs: { and(x, false()) -> false() , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {and(false(), x) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [0] [0 0] [0 0] [0 0] [1] true() = [3] [2] cond2(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [3] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] cond3(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [3] [0 0] [0 0] [0 0] [1] 0() = [0] [0] false() = [0] [2] cond4(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [3] [0 0] [0 0] [0 0] [1] p(x1) = [0 1] x1 + [0] [1 0] [0] and(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] s(x1) = [0 1] x1 + [0] [1 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { and(false(), x) -> false() , and(x, false()) -> false() , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {gr(0(), x) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(cond3) = {1, 2}, Uargs(cond4) = {1, 3}, Uargs(p) = {}, Uargs(and) = {1, 2}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2, x3) = [1 2] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 1] [0] true() = [3] [3] cond2(x1, x2, x3) = [1 2] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 1] [0] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [0] cond3(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [2] [0 0] [0 0] [0 1] [0] 0() = [0] [0] false() = [0] [0] cond4(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [2] [0 0] [0 0] [0 1] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] and(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { gr^#(s(x), 0()) -> c_1() , gr^#(s(x), s(y)) -> gr^#(x, y)} Weak DPs: { gr^#(0(), x) -> c_3() , and^#(false(), x) -> c_4() , and^#(x, false()) -> c_5() , cond3^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , cond1^#(true(), x, y) -> cond2^#(gr(x, y), x, y) , cond2^#(true(), x, y) -> cond3^#(gr(x, 0()), x, y) , cond3^#(true(), x, y) -> cond3^#(gr(x, 0()), p(x), y) , cond2^#(false(), x, y) -> cond4^#(gr(y, 0()), x, y) , p^#(s(x)) -> c_11() , and^#(true(), true()) -> c_12() , cond4^#(true(), x, y) -> cond4^#(gr(y, 0()), x, p(y)) , cond4^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , p^#(0()) -> c_15()} We consider the following Problem: Strict DPs: { gr^#(s(x), 0()) -> c_1() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { gr^#(0(), x) -> c_3() , and^#(false(), x) -> c_4() , and^#(x, false()) -> c_5() , cond3^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , cond1^#(true(), x, y) -> cond2^#(gr(x, y), x, y) , cond2^#(true(), x, y) -> cond3^#(gr(x, 0()), x, y) , cond3^#(true(), x, y) -> cond3^#(gr(x, 0()), p(x), y) , cond2^#(false(), x, y) -> cond4^#(gr(y, 0()), x, y) , p^#(s(x)) -> c_11() , and^#(true(), true()) -> c_12() , cond4^#(true(), x, y) -> cond4^#(gr(y, 0()), x, p(y)) , cond4^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , p^#(0()) -> c_15()} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , cond3(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , cond1(true(), x, y) -> cond2(gr(x, y), x, y) , cond2(true(), x, y) -> cond3(gr(x, 0()), x, y) , cond3(true(), x, y) -> cond3(gr(x, 0()), p(x), y) , cond2(false(), x, y) -> cond4(gr(y, 0()), x, y) , p(s(x)) -> x , and(true(), true()) -> true() , cond4(true(), x, y) -> cond4(gr(y, 0()), x, p(y)) , cond4(false(), x, y) -> cond1(and(gr(x, 0()), gr(y, 0())), x, y) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Usable Rules: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} We consider the following Problem: Strict DPs: { gr^#(s(x), 0()) -> c_1() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { gr^#(0(), x) -> c_3() , and^#(false(), x) -> c_4() , and^#(x, false()) -> c_5() , cond3^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , cond1^#(true(), x, y) -> cond2^#(gr(x, y), x, y) , cond2^#(true(), x, y) -> cond3^#(gr(x, 0()), x, y) , cond3^#(true(), x, y) -> cond3^#(gr(x, 0()), p(x), y) , cond2^#(false(), x, y) -> cond4^#(gr(y, 0()), x, y) , p^#(s(x)) -> c_11() , and^#(true(), true()) -> c_12() , cond4^#(true(), x, y) -> cond4^#(gr(y, 0()), x, p(y)) , cond4^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , p^#(0()) -> c_15()} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: { gr^#(s(x), 0()) -> c_1() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { gr^#(0(), x) -> c_3() , and^#(false(), x) -> c_4() , and^#(x, false()) -> c_5() , cond3^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , cond1^#(true(), x, y) -> cond2^#(gr(x, y), x, y) , cond2^#(true(), x, y) -> cond3^#(gr(x, 0()), x, y) , cond3^#(true(), x, y) -> cond3^#(gr(x, 0()), p(x), y) , cond2^#(false(), x, y) -> cond4^#(gr(y, 0()), x, y) , p^#(s(x)) -> c_11() , and^#(true(), true()) -> c_12() , cond4^#(true(), x, y) -> cond4^#(gr(y, 0()), x, p(y)) , cond4^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , p^#(0()) -> c_15()} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->7:{2} [ YES(?,O(n^1)) ] | |->9:{1} [ YES(?,O(n^1)) ] | `->8:{3} [ YES(O(1),O(1)) ] ->6:{4} [ YES(O(1),O(1)) ] ->5:{5} [ YES(O(1),O(1)) ] ->4:{6,9,8,7,14,13,10} [ YES(O(1),O(1)) ] ->3:{11} [ YES(O(1),O(1)) ] ->2:{12} [ YES(O(1),O(1)) ] ->1:{15} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: gr^#(s(x), 0()) -> c_1() , 2: gr^#(s(x), s(y)) -> gr^#(x, y)} WeakDPs DPs: { 3: gr^#(0(), x) -> c_3() , 4: and^#(false(), x) -> c_4() , 5: and^#(x, false()) -> c_5() , 6: cond3^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , 7: cond1^#(true(), x, y) -> cond2^#(gr(x, y), x, y) , 8: cond2^#(true(), x, y) -> cond3^#(gr(x, 0()), x, y) , 9: cond3^#(true(), x, y) -> cond3^#(gr(x, 0()), p(x), y) , 10: cond2^#(false(), x, y) -> cond4^#(gr(y, 0()), x, y) , 11: p^#(s(x)) -> c_11() , 12: and^#(true(), true()) -> c_12() , 13: cond4^#(true(), x, y) -> cond4^#(gr(y, 0()), x, p(y)) , 14: cond4^#(false(), x, y) -> cond1^#(and(gr(x, 0()), gr(y, 0())), x, y) , 15: p^#(0()) -> c_15()} * Path 7:{2}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , gr^#_0(2, 2) -> 1 , gr^#_1(2, 2) -> 1} * Path 7:{2}->9:{1}: YES(?,O(n^1)) -------------------------------- We consider the following Problem: Strict DPs: {gr^#(s(x), 0()) -> c_1()} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), 0()) -> c_1()} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), 0()) -> c_1()} Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gr^#(s(x), 0()) -> c_1()} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { 0_0() -> 2 , s_0(2) -> 2 , gr^#_0(2, 2) -> 1 , c_1_1() -> 1} * Path 7:{2}->8:{3}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{4}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{5}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{6,9,8,7,14,13,10}: YES(O(1),O(1)) ----------------------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{11}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{12}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{15}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { gr(0(), x) -> false() , and(false(), x) -> false() , and(x, false()) -> false() , p(s(x)) -> x , and(true(), true()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))