(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x, y) → cond(gr(x, y), p(x), s(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
S tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c3
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), s(z1)), GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0,
z1) →
c(
COND(
gr(
z0,
z1),
p(
z0),
s(
z1)),
GR(
z0,
z1)) by
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, x0, x1) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, x0, x1) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, x0, x1) → c
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, 0, z0) → c(COND(false, p(0), s(z0)), GR(0, z0))
COND(true, x0, x1) → c
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
We considered the (Usable) Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(COND(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [5]
POL(gr(x1, x2)) = [3] + x2
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = [3]
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
x1) →
c(
COND(
gr(
s(
z0),
x1),
z0,
s(
x1)),
GR(
s(
z0),
x1)) by
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(x0), x1) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(x0), x1) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, s(x1)), GR(s(z0), x1))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(17) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
COND(true, s(z0), 0) → c(COND(true, z0, s(0)), GR(s(z0), 0))
Removed 1 trailing nodes:
COND(true, s(x0), x1) → c
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(s(z1))), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
s(
z1)) →
c(
COND(
gr(
z0,
z1),
p(
s(
z0)),
s(
s(
z1))),
GR(
s(
z0),
s(
z1))) by
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(x0), s(x1)) → c
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(s(z0))), GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(25) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(s(x1))), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [5]x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [3] + [2]x1 + [2]x2
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = [3]
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, s(x1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0,
x1) →
c(
COND(
gr(
0,
x1),
0,
s(
x1))) by
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
COND(true, 0, x0) → c
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
COND(true, 0, x0) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
COND(true, 0, x0) → c
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(31) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, 0, x0) → c
COND(true, 0, z0) → c(COND(false, 0, s(z0)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
0) →
c(
COND(
true,
p(
s(
z0)),
s(
0))) by
COND(true, s(z0), 0) → c(COND(true, z0, s(0)))
COND(true, s(x0), 0) → c
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), 0) → c(COND(true, z0, s(0)))
COND(true, s(x0), 0) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), s(0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(35) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
COND(true, s(z0), 0) → c(COND(true, z0, s(0)))
Removed 1 trailing nodes:
COND(true, s(x0), 0) → c
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(37) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0))) by COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(s(0))), GR(s(s(z0)), s(0)))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(s(0))), GR(s(s(z0)), s(0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(s(0))), GR(s(s(z0)), s(0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(39) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(s(0))), GR(s(s(z0)), s(0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(41) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
COND(
true,
s(
z0),
s(
z1)) →
c(
COND(
gr(
z0,
z1),
z0,
s(
s(
z1))),
GR(
s(
z0),
s(
z1))) by
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(43) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(s(z1)))), GR(s(s(z0)), s(s(z1)))) by COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [2]x2
POL(GR(x1, x2)) = [1]
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [3] + [3]x1
POL(s(x1)) = [4] + x1
POL(true) = [3]
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(47) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(z0), s(z1)) → c3(GR(z0, z1))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND(x1, x2, x3)) = [3] + x2 + x3 + x22
POL(GR(x1, x2)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), s(z1))
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(s(z1))), GR(s(z0), s(z1)))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
S tuples:none
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(s(x1))) → c(COND(gr(z0, s(x1)), z0, s(s(s(x1)))), GR(s(z0), s(s(x1))))
COND(true, s(z0), s(s(s(x1)))) → c(COND(gr(z0, s(s(x1))), z0, s(s(s(s(x1))))), GR(s(z0), s(s(s(x1)))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(s(z1)))), GR(s(s(z0)), s(s(z1))))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(49) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(50) BOUNDS(O(1), O(1))